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Abstract

Some innovations are developed to comply with or circumvent legal and regulatory

requirements. While these regulation-driven innovations can generate societal bene-

fits, they may also incur unintended economic costs. This paper explores this unique

type of innovation and examines its relationship with firm dynamics, creative destruc-

tion, and economic growth. I present a simple Schumpeterian model demonstrating

how regulation-driven innovations can serve as a strategy for firms to achieve higher

growth, deter competitors, and reduce the rate of creative destruction. Guided by the

model’s implications, I identify regulation-driven innovations from U.S. patents issued

between 1976 and 2020 by measuring the degree of alignment between patents and

federal regulations. I construct this measure by estimating textual similarities between

patent documents and regulatory texts using natural language processing techniques.

Linking the measure with patent- and firm-level data, I find that innovation-regulation

alignment is positively associated with the economic value of patents and the growth

in size and market power of innovating firms. At the aggregate level, however, the

static gains for innovating firms fail to offset the dynamic social costs from reduced

reallocation and competition.
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1 Introduction

Innovation is a key driver of economic growth. Researchers and policymakers often focus on

market-driven innovations, a significant portion of technological advancements motivated by

consumer demand, competition, and market opportunities. However, regulation-driven inno-

vations—those developed to comply with or circumvent legal and regulatory requirements—

present a unique intersection between public policy and firm strategy. For example, firms

develop innovations in emissions-reducing technologies, such as electric vehicles and carbon

capture systems, in response to environmental regulations, while public health regulations

drive advancements in food safety and drug compliance technologies. As governments im-

plement regulations to address public health, environmental concerns, and market stability,

nearly every firm feels the impact, regardless of industry or size. Understanding how firms

adapt their innovation activities in response to regulation is crucial. By exploring regulation-

driven innovations, we can better understand how regulatory environments shape technolog-

ical progress and firm dynamics, potentially influencing long-term economic growth.

In this paper, I identify regulation-driven innovations from U.S. patents issued from 1976

to 2020 by measuring the extent to which each patent is aligned with federal regulations

based on textual similarities between patent documents and regulatory texts. Drawing on

theoretical insights on the Schumpeterian growth model (Aghion and Howitt, 1992), I exam-

ine the measure of innovation-regulation alignment at the patent, firm, and macroeconomic

levels and study their relationships with firm dynamics, competition, and aggregate economic

outcomes. Both theoretical and empirical findings suggest that while regulation-driven inno-

vations can generate private gains for innovating firms, they may negatively impact macroe-

conomic performance by slowing creative destruction—the process in which new innovations

replace and render existing ones obsolete over time (Schumpeter, 1942).

The analysis begins with an extended Schumpeterian model to investigate how regulation-

driven innovations could influence business dynamism, firm entry and exit, and creative

destruction. I adapt the model from the theoretical framework of Akcigit et al. (2023),
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which builds on Aghion and Howitt (1992)’s seminal Schumpeterian model formalizing the

notion of creative destruction. In the model, firms face a regulatory burden that increases

the marginal cost of production. The regulatory burden includes compliance costs with

regulatory requirements as well as noncompliance costs such as penalties and litigation fees.

However, the firm can adopt a regulation-driven innovation, subject to a fixed cost. The

innovation updates the firm’s production process, allowing it to produce the same goods with

a reduced regulatory burden by complying more efficiently with or circumventing regulatory

requirements. The extent of the reduction depends on the degree of alignment between the

regulation-driven innovation and the regulations the firm faces.

The model provides implications from both static and dynamic perspectives. In a static

setting, adopting a regulation-driven innovation that updates the production process leads

to firm growth in its labor input, output, and revenue. Moreover, the growth is larger if

the alignment between the innovation and regulations is higher. In a dynamic environment

where entrants can displace incumbents with better-quality goods, incumbents’ regulation-

driven innovations offer them advantages over other market participants who may not have

such innovations. This increases barriers to entry, prevents quality-improving innovation,

and reduces the rate of creative destruction.

Guided by the model predictions, I present empirical evidence on the economic implica-

tions of regulation-driven innovations. I propose a novel measure of innovation-regulation

alignment for all U.S. utility patents issued between 1976 and 2020. Inspired by the recent

literature that extracts various features of innovations using textual analysis of patent doc-

uments (Kelly et al., 2021; Bloom et al., 2021; Kogan et al., 2021; Autor et al., 2024), I

construct the measure using natural language processing (NLP) techniques to map patents

to the Code of Federal Regulations (CFR). Using a pretrained transformer-based model to

generate text embeddings, I estimate the semantic similarity between the text of a patent’s

abstract and the CFR published before and during the patent’s grant year. The measure

captures the extent to which the new technology described in a patent aligns with the ex-
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isting regulations available in the inventor’s information set at the time of developing and

filing the patent. Regulation-driven innovations are defined as patents with a high degree of

alignment with federal regulatory texts.

The patent-level regulatory alignment measure reveals several interesting descriptive pat-

terns. First, both the share of regulation-driven patents and the annual average regulatory

alignment value increased over the period of 1976-2020. This trend persists when control-

ling for the volume of federal regulations. This observation implies that firms may have

become more aware of the private value in exploiting regulation through their innovation

activities and are increasingly using it as a tool to maintain their market positions. Second,

regulation-driven innovations concentrate in several technology classes, including informa-

tion and communication technology (ICT), technologies for producing and handling chem-

icals and organisms, refrigeration and heating systems, life-saving and fire-fighting devices,

and agriculture. Linking the technology classes with subject areas of the CFR indicates

that innovations in these classes are driven by regulations that are widely known to govern

relevant firms and industries. These linkages provide additional external validity for the

regulatory alignment measure.

Empirical patterns in the patent-level data are consistent with the model implication

that regulation-driven innovations tend to bring regulatory advantages and thus additional

monopoly rents to innovating firms. By linking the regulatory alignment measure with patent

value, I find that a patent’s regulatory alignment is positively associated with its private

economic value, a measure of the monopoly rents associated with the patent constructed

by Kogan et al. (2017). However, the lack of significant relationship between regulatory

alignment and scientific value of the patent, as measured by forward citations, suggests that

the innovations providing regulatory advantages to firms may differ from those contributing

to scientific advance, mirroring the distinction between regulation-driven innovation and

quality-improving innovation in the model.

By exploiting the timing of patent grants, I aggregate the measure to identify the extent
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to which a firm’s innovative output was driven by regulation at a given point in time and

examine how the firm’s regulation-driven innovations relate to its economic performance.

Specifically, I match the firm-level measure with Compustat data and estimate the rela-

tion between a firm’s innovation-regulation alignment and its future growth in firm size

and market power. Consistent with the model implications, I find that firms with higher

innovation-regulation alignment tend to achieve larger growth in terms of profit, output, cap-

ital investment, and employment. In addition, as regulation-driven innovations help firms

dominate a market by deterring competitors, I observe a statistically significant positive re-

lationship between a firm’s innovation-regulation alignment and growth in its market share

and markup.

On the other hand, a firm’s regulation-driven innovations create relative disadvantages

for its competitors. The empirical analyses on competitors’ growth indicate that a firm’s

innovation-regulation alignment is negatively associated with its competitors’ growth in

profit, output, and capital. These findings suggest a strong relation between regulatory

responses and resource reallocation across firms—a flow to firms with regulation-driven in-

novations and away from their competitors—and are consistent with the Schumpeterian view

of creative destruction.

The patent- and firm-level results suggest that the potential effects of regulation-driven

innovation can go beyond private gains (and losses) and have implications for aggregate

economic outcomes and growth. To explore the macroeconomic implications, I aggregate

the measure of innovation-regulation alignment into a quarterly economy-wide index from

1976 to 2020 and examine its relation with macroeconomic indicators including output,

employment, private investment, and stock prices. Using the local projection method (Jordà,

2005), I estimate the impulse responses of the macroeconomic variables to an upward shock

in the growth of aggregate innovation-regulation alignment. The estimates suggest that a

one-standard-deviation shock leads to a maximum drop of 0.4 percent in GDP, 0.5 percent

in employment, 1.6 percent in private domestic investment, and 3.1 percent in the S&P 500

4



index. The size of these effects is comparable to that of other macroeconomic shocks, such

as monetary policy shocks and economic policy uncertainty shocks.

While the analyses in this paper do not aim to establish causal relationships, they provide

illustrative evidence of how certain firms can leverage regulation to their advantage through

innovation activities. The findings suggest that regulation-driven innovations allow firms to

adapt to or exploit regulatory frameworks, potentially enhancing their competitive positions.

However, these innovations may also have unintended consequences for the broader econ-

omy. As delineated in the Schumpeterian growth model, entrants create new innovations

to replace incumbents with old technologies through creative destruction by introducing a

better-quality version of an existing product (Aghion and Howitt, 1992). In this process,

incumbent firms face incentives to prevent subsequent innovations and slow down creative

destruction (Krusell and Rios-Rull, 1996; Mukoyama and Popov, 2014). Similar to other

strategies that firms use to achieve this (Baslandze, 2023; Akcigit et al., 2023; Comin and

Hobijn, 2009; Argente et al., 2020; Cavenaile et al., 2021), regulation-driven innovations

provide another tool for firms to deter competitors and block creative destruction. This, in

turn, stifles technological innovation and slows aggregate economic growth.

This paper contributes to our understanding of the complex interplay between regulation

and innovation. Traditionally, regulation has been viewed as a burden for businesses, creat-

ing compliance costs and diverting resources that could otherwise be used for R&D (Eads,

1980; Aghion et al., 2023; Coffey et al., 2020; Alesina et al., 2018; Garcia-Vega et al., 2021;

Samaniego, 2006). Regulation may also discourage or postpone firms’ investment and hiring

by creating negative perceptions or significant uncertainty about the regulatory environment

in which they operate (Baker et al., 2016; Sinclair and Xie, 2022). However, others argue

that regulation can also stimulate innovation, particularly with supporting evidence found

in the areas of environmental regulations (Porter, 1996; Lanjouw and Mody, 1996; Jaffe and

Palmer, 1997) and labor regulations (Acharya et al., 2013, 2014; Bena et al., 2022; Griffith

and Macartney, 2014; Manera and Uccioli, 2021; Saint-Paul, 2002). This paper shows that

5



the competing effects of regulation found in the literature are not necessarily contradictory.

Some firms may adapt their operations to the regulatory environment and generate private

gains, while others continue to suffer from regulatory burden or face higher barriers to entry.

As the theory of creative destruction elaborates, there are winners and losers in the process

of growth (Baslandze, 2023), and the presence of regulation widens the gap between winners

and losers. In aggregate, the dynamic social costs from reduced reallocation and competition

may outweigh the static benefits for the winners.

This study also contributes to the broad literature on measuring innovation by creating

a new measure that captures the regulatory dimension of innovation. Patents serve as an

informative indicator of innovation (Lerner and Seru, 2022; Higham et al., 2021). Prior re-

search has constructed various measures that reflect different aspects of the value of patents

(Khanna, 2019). A widely used measure is patent citations, which reflects the technological

impact or scientific value of patents (Hall and Trajtenberg, 2005; Higham et al., 2021). How-

ever, patents with great scientific value or societal benefits may not be valued equivalently

by inventors. Kogan et al. (2017) estimate the private, economic value of patents based

on fluctuations in stock prices of publicly-traded firms within a short time window after

they were granted a patent. In this paper, I examine how patents’ regulatory alignment is

associated with both their scientific and economic value.

This study is the first to link patent documents with U.S. federal regulations through

an analysis of their semantic textual similarity, extending the recent work that uses textual

analysis to extract features of innovation. For example, Kelly et al. (2021) measure the im-

portance of patents based on textual similarity of a given patent to previous and subsequent

patents and identify breakthrough innovations since 1840. Bloom et al. (2021) use the full

text of patents and earnings conference calls to identify technological innovations that have

disrupted a large number of businesses. Other studies (Kogan et al., 2021; Autor et al.,

2024; Mann and Püttmann, 2023; Webb, 2019) link patent documents to occupation task

descriptions to examine the relationship between technological innovations and labor market
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outcomes. These studies have demonstrated that text-based measures from patents provide

valuable information about innovation and help address many economic questions that are

challenging to answer with traditional data.

The remainder of this paper is structured as follows. Section 2 presents a simple Schum-

peterian model that illustrates how regulation-driven innovations can influence firm growth

and creative destruction. In Section 3, I describe how I construct the empirical measure of

patent-level regulatory alignment. Section 4 discusses illustrative examples and descriptive

patterns in regulatory alignment of patents, as a way to validate and interpret the measure.

Section 5 shows the patent-level analysis, unpacking the relationship between regulatory

alignment and value of patents. In Section 6, I present the firm-level measure of innovation-

regulation alignment and how it relates to a firm and its competitors’ growth. Section

7 explores the macroeconomic implications of innovation-regulation alignment. Section 8

concludes the study.

2 Model

In this section, I adapt the extended Schumpeterian model from Akcigit et al. (2023) to

show how regulation-driven innovations affect firm growth and creative destruction. The

final goods Y is produced following a constant elasticity of substitution aggregation:

Yt =
1

1 − ψ

 M∑
m=1

qmt
ψ

1−ψ ymt

1−ψ

, (1)

where ym is the amount of intermediate goods of vintage m, and qm is the quality of vintage

m. The price of Y is normalized to 1. The final goods sector is perfectly competitive, and

the representative final goods firm chooses the input of vintage m to maximize its profit:

max
ymt

1

1 − ψ

 M∑
m=1

qmt
ψ

1−ψ ymt

1−ψ

− pmtymt. (2)
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The first order condition leads to the inverse demand function for the producer of vintage

m:

pmt = q
ψ

1−ψ
mt

 M∑
m=1

qmt
ψ

1−ψ ymt

−ψ

. (3)

Different vintages differ by their qualities qm and are perfect substitutes after adjusting

for quality. Following Akcigit et al. (2023), I assume that producers of different vintages

compete on prices to win the entire market. In equilibrium, the producer with the highest

cost-adjusted quality will become the monopolist of the market and charge the monopoly

price. Accordingly, the demand function faced by the producing firm of vintage m becomes:

pmt = qψmty
−ψ
mt . (4)

Next, I first study intermediate goods producers in a static environment, where they can

choose whether to adopt regulation-driven innovations to update their production process in

response to regulation, and then I discuss firm dynamics between entrants and incumbents.

2.1 Static Environment

In a static environment, the producer of intermediate goods m is a monopolist. I suppress

the subscripts m and t in this section. The production of intermediate goods follows a linear

technology:

y = l, (5)

where l is the labor input. The wage rate of the labor is w.

Each intermediate goods producer also faces a regulatory burden τ in its production,

which increases the marginal cost of production from w to (1 + τ)w. The regulatory burden

can include costs of compliance with relevant regulations, or costs of noncompliance such as

penalties, litigation fees, and losses from operational disruptions.

I first consider an intermediate goods firm subject to this regulatory burden, and then
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discuss a firm that innovates to update its production process to reduce the regulatory bur-

den. I solve the maximization problem of each firm and compare their optimal choices.

A. Firms subject to regulations

A monopolist that is subject to a regulatory burden maximizes profit as follows:

πN = max
l

{py − (1 + τ)wl}, s.t. p = qψy−ψ and (5). (6)

The first order condition generates the firm’s optimal choice of labor input: lN =
[

1−ψ
(1+τ)w

] 1
ψ
q.

Accordingly, the firm’s output is yN = lN , revenue is RN =
[

1−ψ
(1+τ)w

] 1−ψ
ψ
q, and profit is:

πN = π̃(1 + τ)−
1−ψ
ψ q, (7)

where π̃ ≡ ψ(1−ψ
w

)
1−ψ
ψ .

B. Firms with regulation-driven innovations

A monopolist that is subject to the same regulatory burden can adopt a regulation-driven

innovation, which updates its production process such that it can produce the intermediate

goods with the same quality (q) at a lower regulatory cost. The idea is that the updated

process either reduces the cost of regulatory compliance or circumvent regulatory require-

ments, thereby reducing regulatory burden. The firm pays a fixed cost of w0 for adopting

the regulation-driven innovation, which can be considered as the cost of R&D paid at the

time of adoption or the cost of implementing the technology in production.

The reduction of regulatory burden depends on the extent to which the innovation (or

the updated production process) is aligned with regulations. Specifically, the marginal cost

of production becomes [(1 + (1 − ξ)τ ]w, where ξ∼F (0, 1] denotes the level of innovation-

regulation alignment. I assume that the realization of ξ is exogenous and has the distribution

of F (·). In an extreme case, when the regulation-driven innovation completely aligns with
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existing regulations (i.e., ξ = 1), the firm faces no regulatory burden.

The firm maximizes profit as follows:

πR = max
l

{py −
[
1 + (1 − ξ)τ

]
wl − w0}, s.t. p = qψy−ψ and (5). (8)

The firm’s optimal choice of labor is lA =
[

1−ψ
[1+(1−ξ)τ ]w

] 1
ψ
q; output is yA = lA; revenue is

RA =
[

1−ψ
[1+(1−ξ)τ ]w

] 1−ψ
ψ
q; and profit is

πA = π̃
[
1 + (1 − ξ)τ

]− 1−ψ
ψ q − w0. (9)

As shown in Table 1, comparing the optimal choices of the two types of firms, firms

with regulation-driven innovations have higher labor input, output, and revenue than firms

without such innovations. That is, for a firm producing intermediate goods with given quality

q and facing a regulatory burden, adopting a regulation-driven innovation that updates its

production process will results in growth in its employment, output, and revenue. In sum:

Proposition 1 Regulation-driven innovations lead to firm growth in terms of employment,

output, and revenue.

Moreover, as ξ increases, labor input (∂l
A

∂ξ
> 0), output(∂y

A

∂ξ
> 0), and revenue (∂R

A

∂ξ
> 0)

of the firm with regulation-driven innovations increase, so the magnitude of growth increases.

Therefore, the model suggests that:

Proposition 2 The growth of firms with regulation-driven innovations becomes larger as

the level of innovation-regulation alignment increases.

While the realization of innovation-regulation alignment is exogenous, whether to adopt

the regulation-driven innovation is an endogenous decision for the firm. Firms will choose

to do so if πA(q) > πN(q). Using (7) and (9), we can derive the equilibrium threshold in the

static environment, q̂s, such that firms will choose to adopt regulation-driven innovations if
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Table 1: Optimal Choices for Firms With and Without Regulation-Driven Innovations

Firm N Firm A Comparison Changes as ξ ↑
Labor (l)

[
1−β

(1+τ)w

] 1
β
q

[
1−β

[1+(1−ξ)τ ]w

] 1
β
q lN < lA

∣∣lA − lN
∣∣ ↑

Output (y)
[

1−β
(1+τ)w

] 1
β
q

[
1−β

[1+(1−ξ)τ ]w

] 1
β
q yN < yA

∣∣yA − yN
∣∣ ↑

Revenue (R)
[

1−β
(1+τ)w

] 1−β
β
q

[
1−β

[1+(1−ξ)τ ]w

] 1−β
β
q RN < RA

∣∣RA −RN
∣∣ ↑

and only if:

q > q̂s ≡ w0

π̃(
[
1 + (1 − ξ)τ

]− 1−ψ
ψ − (1 + τ)−

1−ψ
ψ )

. (10)

Therefore, only firms with sufficiently large quality chooses to update their production pro-

cesses in response to regulations. Since labor, output, and revenue are all functions of q, it

implies that larger firms are more incentivized to adopt regulation-driven innovations. The

intuition is that the payoff from adopting such innovations becomes more appealing as the

regulatory cost increases with firm size.

For the sake of simplicity, I assume ψ = 0.5 for the rest of the model discussion. Hence

the static threshold becomes:

q > w0

(
π̃

[
1

1 + (1 − ξ)τ
− 1

1 + τ

])−1

. (11)

2.2 Dynamic Environment

In a dynamic environment, firms enter the market with new innovative ideas that improve

product quality and can potentially replace incumbents. A potential entrant receives a new

quality-improving innovative idea at Poisson arrival rate σ and produces a new vintage M+1,

which improves the quality of the most recent vintage M by λ as follows:

qM+1 = (1 + λ)qM , (12)
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where λ∼G(0,∞) denotes the realization of quality according to the distribution G(·). Note

that quality-improving innovations are distinct from regulation-driven innovations, as the

latter only update the production process with reduced regulatory burden but do not change

the quality of goods.

As a prerequisite for adopting regulation-driven innovations in the production process,

firms must first acquire sufficient knowledge about relevant regulatory requirements. This

resembles real-world practices as regulated entities often consult with legal experts and seek

guidance from regulators on how to comply with regulations. Firms start with one of two

states (s ∈ {0, 1}) regarding this required regulatory information. I assume that a share α

of entrants have the regulatory information (i.e., s = 1), and 1−α have no such information

(i.e., s = 0). Firms switch from s = 0 to s = 1 at the Poisson arrival rate ζ.

An entrant will replace the incumbent if its quality-adjusted cost is lower. That is, the

entrant must have a higher quality-to-price ratio to beat the incumbent in a pricing game:

qM+1

pM+1

>
qM
pM

. (13)

In a standard Schumpeterian model, entrants replace incumbents by making any quality

improvement λ > 0, and the rate of creative destruction is σ (Aghion and Howitt, 1992).

In an economy where the incumbent can adopt a regulation-driven innovation to reduce its

regulatory burden, however, the entrant must possess much higher quality to beat the cost

advantage of the incumbent. To see the specific conditions under which the entrant replaces

the incumbent in this economy, we can consider four different cases.

In the first case, neither the incumbent nor the entrant has regulation-driven innovations

adopted. In the price competition, the lowest price that both firms can charge is (1 + τ)w.

Substituting that into (13) yields λ > 0. Hence, any improvement in quality will be sufficient

for the entrant to replace the incumbent. The condition is also satisfied in the second case,

where the entrant has regulation-driven innovations adopted while the incumbent does not.
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The entrant can charge a lower price [1 + (1 − ξ)τ ]w, so any quality improvement will be

sufficient. In the third case, both the incumbent and the entrant have regulation-driven

innovations adopted. Similar to the first case, neither firm has any cost advantage. The

entrant will replace the incumbent by making any quality improvement λ > 0. In the first

three cases, therefore, the model is similar to a standard Schumpeterian economy, in which

entrants replace incumbents at the rate σ (Aghion and Howitt, 1992).

The fourth, and perhaps most interesting, case is that the incumbent has regulation-

driven innovations adopted, but the entrant does not. This asymmetry leads to a regulatory

advantage of the incumbent, and the entrant needs to have sufficiently higher quality to

replace the incumbent. The lowest price that the incumbent can charge now is [1+(1−ξ)τ ]w,

and the price for the entrant is (1 + τ)w. The condition in (13) gives a quality threshold λ∗

such that the entrant will replace the incumbent if and only if:

λ > λ∗ ≡ ξτ

1 + (1 − ξ)τ
. (14)

This also equals the regulatory advantage that the incumbent has as a result of regulation-

driven innovations.

To see when the incumbent chooses to adopt regulation-driven innovations in the dynamic

setting, I start by writing down the value function of the incumbent. I first assume that there

is a dynamic quality threshold q̂d, such that firms with q > q̂d choose to adopt regulation-

driven innovations, and I ultimately solve the threshold q̂d.

Incumbents with q < q̂d. Consider an incumbent firm with quality lower than the thresh-

old and denote its value function by V−1. The firm can operate to get instantaneous profits

πN but will be replaced and exit the market at the rate σ, so we have the following:

rV−1(q) = π̃(1 + τ)−1q︸ ︷︷ ︸
πN

−σV−1(q)︸ ︷︷ ︸
replaced

, (15)

where r > 0 is the exogenous risk-free interest rate. The left-hand side of this equation
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represents the safe return, and the right-hand side denotes the risky return. Rearranging

equation (15) gives:

V−1(q) =
π̃(1 + τ)−1

r + σ
q. (16)

Incumbents with q ≥ q̂d in state s = 0. Now the incumbent has quality above the

threshold q ≥ q̂d but starts with no regulatory information required for regulation-driven

innovations (s = 0), and its value function is V0. Similarly, the firm can collect profits πN

and get replaced at the rate σ, but it will also acquire regulatory information (s = 1) at the

rate ζ. Equating its safe return with risky return generates:

rV0(q) = π̃(1 + τ)−1q︸ ︷︷ ︸
πN

−σV0(q)︸ ︷︷ ︸
replaced

+ ζ
(
V1(q) − V0(q)

)︸ ︷︷ ︸
get regulatory information

, (17)

where V1 denotes the value function of a firm in state s = 1 with q ≥ q̂d.

Incumbents with q ≥ q̂d in state s = 1. The incumbent with regulatory information

(s = 1) and q ≥ q̂d can collect the profit πA but is replaced at a different rate, depending on

whether the entrant has regulatory information or not. Therefore, the firm has the following

value function:

rV1(q) = π̃
[
1 + (1 − ξ)τ

]−1
q − w0︸ ︷︷ ︸

πA

−σ
[

α︸︷︷︸
with regulatory
information

+ (1 − α)Pr(λ > λ∗)︸ ︷︷ ︸
no regulatory information

but major quality improvement

]
V1(q). (18)

Rearranging (18) gives:

V1(q) =
π̃
[
1 + (1 − ξ)τ

]−1
q − w0

r + σ̃
, (19)

where σ̃ ≡ σ
[
α + (1 − α)Pr(λ > λ∗)

]
.

The incumbent will adopt regulation-driven innovations if and only if such innovations

bring more value to the firm: V1(q) > V−1(q). Using (16) and (19), we can solve for the

14



dynamic threshold q̂d:

q > q̂d ≡ w0

(
π̃

[
1

1 + (1 − ξ)τ
− r + σ̃

r + σ

1

1 + τ

])−1

. (20)

Comparing the static and dynamic thresholds yields:

q̂s = w0

(
π̃

[
1

1 + (1 − ξ)τ
− 1

1 + τ

])−1

> w0

(
π̃

[
1

1 + (1 − ξ)τ
− r + σ̃

r + σ

1

1 + τ

])−1

= q̂d,

(21)

given σ̃ = σ
[
α + (1 − α)Pr(λ > λ∗)

]
< σ. The gap between q̂d and q̂s means that:

Proposition 3 In a dynamic environment, incumbent firms have an additional preemptive

motive to adopt regulation-driven innovations.

The additional preemptive motive results from the benefits that incumbents anticipate get-

ting by discouraging entry and restricting competition if they adopt regulation-driven inno-

vations. Consequently, these incumbents gain more market power and survive longer. Note

that as ξ increases, λ∗ = ξτ
1+(1−ξ)τ increases and thus Pr(λ > λ∗) decreases, so σ̃ decreases

(∂σ̃
∂ξ

< 0). As a result, the gap between q̂d and q̂s further widens, so the incumbent faces

even more additional preemptive motive to invest in regulation-driven innovations. This is

intuitive as higher innovation-regulation alignment provides larger regulatory advantage to

incumbents if they adopt regulation-driven innovations.

The equilibrium creative destruction rate is:

Entry rate =


σ if incumbents do not adopt regulation-driven innovations,

σ̃ if incumbents adopt regulation-driven innovations.

With σ̃ < σ, the model implies that:

Proposition 4 Regulation-driven innovations slow down creative destruction.
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When incumbents have such innovations adopted, entrants face more barriers to entry, as

they must achieve higher quality improvements to replace incumbents.

Also, as the level of innovation-regulation alignment ξ increases, the rate of creative

destruction σ̃ further decreases (∂σ̃
∂ξ
< 0). This leads to the following:

Proposition 5 The rate of creative destruction further decreases as the level of innovation-

regulation alignment increases.

In the following sections, I examine these model implications empirically by identifying

regulation-driven innovations from U.S. patents and constructing a text-based measure of

innovation-regulation alignment.

3 Measuring Regulatory Alignment of Patents

I construct a measure of regulatory alignment for each U.S. patent granted between 1976

and 2020, based on textual similarity between patent documents and federal regulations.

This section describes the data and methodology for constructing the measure as well as

descriptive statistics.

3.1 Text Data

I obtain text data for estimating textual similarity between patents and regulations from

two sources. The patent text data are from the PatentsView database, which complies the

full text, abstract, and various metadata of U.S. patents beginning in 1976 from the U.S.

Patent and Trademark Offic (USPTO). The original dataset includes 7,627,229 patents in

total published from 1976 to 2020. As a common approach in the literature, I focus the

analysis on utility patents, which include 6,913,035 patents.1 My analysis of the patent text

1Utility patents are those “granted to anyone who invents or discovers a new and useful process, ma-
chine, article of manufacture, or composition of matter, or any new and useful improvements of these” (see
https://www.uspto.gov/patents/basics/apply). In addition to utility patents, there are design patents and
plant patents.
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uses the abstract for each patent, so I further omit 796 patents without an abstract. As

a result, the patent corpus for analysis covers 6,912,239 patents granted between 1976 and

2020.

The regulatory text comes from the Code of Federal Regulations (CFR). The CFR is

the official annual edition containing the codification of the general and permanent rules

issued by the U.S. federal government. The CFR represents the stock of federal regulations,

meaning that the regulations that are active and being enforced will be published in each

annual edition of the CFR. To capture the regulations in effect when a patent was filed and

granted, I analyze the CFR parts published both within the five years preceding the patent’s

grant year and during the grant year itself. Therefore, the regulatory corpus includes the

CFR published between 1971 and 2020. I obtain the CFR text data from ProQuest.

Since each volume of the CFR contains thousands of pages, I compare a patent’s abstract

with each “part” in the CFR and estimate their textual similarity. The CFR has a hierar-

chical structure and is divided into 50 titles that represent broad areas subject to federal

regulation, such as agriculture, energy, banks and banking, food and drugs, and protection

of environment. Each title is further divided into chapters, subchapters, parts, and sections,

ranging from very broad to very granular content. A part typically points to a single pro-

gram or function (Al-Ubaydli and McLaughlin, 2017), so it is appropriate to use part as the

unit of analysis. The number of parts in the CFR increased over time, from approximately

4,500 parts in the 1971 edition to over 8,000 parts in 2020. In total, there are 358,367 CFR

parts published between 1971 and 2020.

3.2 Methodology

To estimate the textual similarity between a patent abstract and a CFR part, the first task

is to get numerical representations of the documents. The most common approach used to

convert text to numbers in the literature is the bag-of-words approach (Gentzkow et al.,

2019). A simple version of the bag-of-words approach entails counting how many times each
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unique word appears in a document. A more sophisticated variant of this approach is TF-IDF

(term frequency-inverse document frequency), which takes into account how relevant a word

is to a document in a collection of documents. TF-IDF provides an effective representation of

text and has been used successfully in many prior studies analyzing textual similarity (Kelly

et al., 2021; Biasi and Ma, 2022). For example, Kelly et al. (2021) use a modified version of

the TF-IDF measure to estimate textual similarity between two patent documents, thereby

measuring a patent’s novelty and impact. However, the TF-IDF approach is not suitable

for this study, because I compare two different sets of documents—patents and regulations.

The vocabulary used in patents is likely to be different from that used in regulations, so a

TF-IDF representation would underestimate the similarity (Kogan et al., 2021).

Instead, neural network-based embeddings are a type of text representations that capture

the semantic meaning of text and have been widely used in many deep learning applications

(Gentzkow et al., 2019). An embedding maps a piece of text into a high-dimensional latent

space and expresses it as a dense vector. In the vector space, words with similar semantic

meanings are closely positioned. A well-known example is king − man + woman≈queen,

that is, subtracting the vector man from the vector king and then adding it by woman will

arrive a position close to queen (Gentzkow et al., 2019). One of those embedding techniques

is the transformer architecture, which captures not only the semantic meaning but also

the sequential nature of a text (Vaswani et al., 2017). The sequential order of words is

important in natural language. For example, “kids eat apples” and “apples eat kids” should

have completely different meanings. Since introduced, transfomers have become the core of

the current generation of large language models and led to the development of pre-trained

models such as BERT (Bidirectional Encoder Representations from Transformers) (Devlin

et al., 2018). Over the past few years, various other pre-trained models have been developed,

extending and optimizing the original BERT model for specific NLP tasks.

To obtain embeddings of patent and CFR text, I use a pretained Sentence-BERT model.

Sentence-BERT, or Sentence Transformers, provides a state-of-the-art framework for text
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and image embeddings (Reimers and Gurevych, 2019). This framework is particularly ef-

fective and efficient for semantic similarity comparison for sentences or short paragraphs.

Embeddings of two pieces of text generated by Sentence-BERT can be compared using a

similarity measure such as cosine similarity or Euclidean distance. Sentence-BERT provides

various pretrained models, and the one used in this study is all-mpnet-base-v2, which was

trained on a large dataset of over one billion training pairs and evaluated to have the best

average performance compared to other general-purpose pretrained models.2 The model

maps sentences and paragraphs to a 768 dimensional dense vector space.

To illustrate the idea of the textual similarity analysis, the following shows three sequences

of text and how they compare with each other using Sentence-BERT:3

Sequence 1: A regulation is a set of requirements issued by a federal government
agency to implement laws passed by Congress.

Embedding 1: [0.026,−0.057, 0.001, ..., 0.029,−0.010, 0.013]1×768

Sequence 2: A regulation is a general statement issued by an agency, board, or com-
mission that has the force and effect of law.

Embedding 2: [0.035,−0.074, 0.015, ..., 0.038,−0.007, 0.007]1×768

Sequence 3: Natural language processing (NLP) is a machine learning technology
that gives computers the ability to interpret, manipulate, and comprehend
human language.

Embedding 3: [0.044, 0.013,−0.015, ..., 0.002,−0.005, 0.007]1×768

Textual similarity scores:

1 2 3
1 1.000
2 0.872 1.000
3 0.107 0.123 1.000

2See https://www.sbert.net/docs/pretrained_models.html and https://huggingface.co/

sentence-transformers/all-mpnet-base-v2.
3These sequences are text from the web for illustrative purposes only. Sequence 1 is from the Federal

Reserve Board website (https://www.federalreserve.gov/faqs/what-is-a-regulation.htm); sequence
2 is from reginfo.gov (https://www.reginfo.gov/public/jsp/Utilities/faq.myjsp#reg_rule); and se-
quence 3 is from the Amazon Web Services website (https://aws.amazon.com/what-is/nlp/).
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Since the embeddings generated by Sentence-BERT can contain negative values, the textual

similarity score lies in the interval of [-1,1]. Two identical sequences would generate a textual

similarity score of 1.

A challenge in estimating textual similarity using Sentence-BERT in this study is that

CFR parts vary substantially in length, ranging from dozens to several millions of words.4

Like other BERT-based models, the sentence-transformer model all-mpnet-base-v2 has a

sequence limit such that input text longer than 384 word pieces is truncated. To ensure

that no important information from the CFR is missed due to text truncation while also

maintaining reasonable computing time, I split each CFR part into smaller chunks, with

each chunk containing up to 3,000 words.5 I then compute the cosine similarity between

the patent abstract and each chunk of the CFR part and take the maximum similarity as

the similarity between the patent and the CFR part. Formally, the textual similarity score

between a patent i and a CFR part j, ρi,j, is:

ρi,j = max
q∈Ωj

{ Vi
∥Vi∥

· Vq∥∥Vq∥∥}, (22)

where Ωj denotes the set of text chunks of CFR part j, Vi denotes the embedding vector for

the abstract of patent i, and Vq is the embedding vector for CFR text chunk q ∈ Ωj. The

patent-CFR pair with highly similar semantic meanings will have a high similarity score ρ.

As such, I estimate textual similarities for each patent with all the CFR parts published

4The average length of the CFR parts in the data is 8,180 words, and the median is 2,776. Approximately
56 percent of the CFR parts have a length between 1,000 and 10,000 words. Some CFR parts are particularly
long, such as Title 26 Part 1, which codifies the Internal Revenue Service’s regulations on income taxes and
has over five million words.

5I determine the chunk size of 3,000 words to balance accuracy and computational efficiency. Theoreti-
cally, splitting a long text into chunks with less than 384 word pieces would ensure absolutely no information
loss during text truncation. However, there are at least two drawbacks in that approach. First, analyzing
individual small text chunks separately may lose the context in which a text chunk is discussed and not
capture its semantic meaning correctly. Second, given the large number of patents and CFR parts, splitting
each CFR part into a number of small chunks would significantly increase computational resource demands
for estimating pairwise similarities, while the marginal improvement in performance may be minimal. Using
the chunk size of 3,000 words, approximately 90 percent of the CFR parts are split into no more than five
chunks, ensuring reasonable computing time.
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within five years before and during the patent’s grant year.6 I then construct the measure of

regulatory alignment for the patent by summing the similarity scores. Specifically, regulatory

alignment of patent i is defined as:

Ri =
∑
j∈Θj,T

Iλi (j) × ρi,j, (23)

where Θi,T denotes the set of CFR parts published during the grant year of patent i and

within the preceding T years (in this case, T = 5), and Iλi (j) is an indicator function that

equals 1 if CFR part j has a similarity score larger than or equal to a threshold λ with patent i

(i.e., ρi,j ≥ λ). As such, a patent with a positive regulatory alignment value (Ri > 0) means

that the patent is highly similar to at least some regulatory text, and those patents are

defined as regulation-driven innovations in this study.

Using the sum as an aggregating method, rather than alternatives like the mean or

maximum, reflects the notion of cumulative regulatory burden.7 Prior studies have shown

that the cost of regulation is positively associated with the quantity of regulation (Coffey

et al., 2020; Dawson and Seater, 2013; Mulligan and Shleifer, 2005). Consequently, a high

alignment with 100 CFR parts should not be considered equivalent to alignment with just

one part. Therefore, I posit that a patent with high similarities with a greater number of

CFR parts is more closely aligned with federal regulations and could potentially mitigate a

larger portion of the regulatory burden faced by the innovating firm.

Imposing a threshold restriction in equation (23) ensures that only sufficiently high sim-

ilarity scores receive any weight in the construction of the measure. Since textual similarity

tasks generally return continuous similarity or distance scores, it is almost always necessary

6As shown in Appendix C.2.1, the average time between the application date and the grant date of a
patent in the data is 2.7 years. Covering the CFR published within five years before and during the patent’s
grant year ensures that the regulatory alignment measure captures the regulatory information available to
the innovating firm when its patent was filed and granted.

7However, it is possible that the maximum similarity sometimes reflects the true alignment better than
the sum. In that sense, my measure using the sum is a noisy measure of the true alignment. All else equal,
this biases my estimates toward zero.
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to derive a definition for when two documents are similar and when they are not (Cadamuro

and Gruppo, 2023). Although it is impossible to know a clear cutoff without a large training

dataset, I expect that only a small fraction of patents were driven by regulation, and thus

the threshold λ needs to be sufficiently large to rule out false positives. Using a low λ may

introduce noise into the measure and thus dilute any patterns the measure captures. As

indicated by the three-sequence example above, a highly dissimilar pair could have a textual

similarity score over 0.1. In fact, the majority of the patent-CFR pairwise similarities fall

into the range of 0 to 0.3, as discussed in Section 3.3, meaning that most patents tend to

be unrelated to regulation. The same pattern was also found in other studies examining

textual similarities, such as Kelly et al. (2021) in estimating similarities across patents and

Kogan et al. (2021) in comparing patents and occupation descriptions. Kogan et al. (2021)

focus their analysis on patent-occupation pairs that are above the 80th percentile in textual

similarity, while setting all other lower values to zero.

After selecting a random sample of patents and verifying the corresponding CFR parts

at various similarity scores, I use λ = 0.6 as my baseline threshold. This threshold effectively

excludes nearly all irrelevant regulations for a given patent. However, I acknowledge that this

may not be the best threshold that distinguishes similar patent-CFR pairs from dissimilar

ones. A lower threshold could capture a broader set of regulation-driven innovations, albeit

with the risk of introducing too much noise into subsequent patent, firm, and macro-level

analyses. A higher threshold might be more accurate in eliminating more false positives and

generate stronger results in the empirical analyses. Therefore, I also use different threshold

values in robustness checks.

3.3 Descriptive Statistics

Among all the applicable patent-CFR pairs, the most similar pair generates a textual sim-

ilarity score ρ = 0.89. The minimum is -0.25, and the mean is 0.16. Given that there are

on average 7,100 parts in an annual edition of the CFR, each of the 6,912,239 patents in
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the sample is paired with approximately 42,600 (7, 100 × 6 years) CFR parts. That results

in roughly 320 billion patent-CFR pairs. This tremendously large number of pairs makes

it computationally difficult to examine the full distribution of all pairwise similarity scores.

However, it is possible to examine the distribution over smaller samples.

Examining the pairwise similarity distributions over smaller samples reveals that most

scores fall into a positive range, and thus the threshold λ = 0.6 used in equation (23) only

captures patent-CFR pairs in the right tail. These pairs represent cases where the patents

are more likely to be regulation-driven innovations. Specifically, I select three samples to

assess the extent to which a patent is typically “similar” to a CFR part. The first sample

contains the maximum pairwise similarity score for each of the 6,912,239 patents, so each

patent is associated with only one similarity score in this sample. The distribution therefore

represents an “upper bound” of the distribution of all pairwise similarities. As shown in

Appendix A.1, all the patents have positive textual similarities with at least one CFR part.

Around 39 percent of the patents have similarities larger than 0.5 with at least one CFR

part, and eight percent have similarities larger than 0.6. In the second sample, I select a

random sample of 1,000 patents and examine their similarities with all the applicable CFR

parts (Appendix A.2). The similarity scores fall into a range of smaller values, mostly from

0 to 0.4, since the random sample contains only a few (if any) regulation-driven innovations.

The third sample contains 15 randomly selected patents and is intended to show the within-

patent distribution of all pairwise similarities for each patent (Appendix A.3). Similarly,

most scores range from 0 to 0.3.

Aggregating the pairwise similarities using equation (23) leads to eight percent of the

patents (559,520 out of 6,912,239) with a positive regulatory alignment value (R > 0),

meaning that these patents each have at least one highly similar CFR part. There is a large

variation in regulatory alignment values among these patents, ranging from 0.6 to 861. The

average regulatory alignment value is 6.5, the median is 3.6, and the standard deviation

is 12.4. The distribution is right-skewed, with nearly 85 percent of the patents having a
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regulatory alignment value of 10 or less. That is, most regulation-driven innovations are

only associated with a few highly similar CFR parts. That is intuitive, as it is less likely

that a single patent can align with a large number of regulations. The next section discusses

specific examples of patent-CFR pairs.

4 Validation and Interpretation

To verify that the measure correctly captures the extent to which a patent is aligned with

regulations, I examine specific examples of patents and their most similar CFR parts. Some

patents contain explicit references to specific regulatory requirements, leading to a high

textual similarity score with the referenced regulations. Those with relatively low similarity

scores represent innovations that are more implicitly subject to a set of existing regulations.

I also discuss some descriptive patterns in the resulting regulatory alignment measure.

4.1 Illustrative Examples

Table 2 lists illustrative examples of patent-CFR pairs with various similarity scores above

0.6. Patents with extremely high similarity to CFR parts tend to explicitly reference related

regulations. For example, Patent 8,750,290 “Method and apparatus for ensuring accessibility

to emergency service via VoIP or via PSTN” presents an invention developed to guarantee

compliance with the Federal Communications Commission (FCC)’s Order 05-116 that re-

quires interconnected Voice over Internet Protocol (VoIP) service providers to deliver all

emergency service calls to a VoIP service user’s local emergency service operator. The most

similar CFR part to this patent is Title 47 Part 9 “Interconnected Voice Over Internet

Protocol Services,” which codifies the FCC order.

The patent “D-ring height adjuster” (5,794,977) describes an invention of a seat belt

webbing height adjuster, which is a vehicle occupant safety apparatus. Federal law has

required all vehicles to be equipped with seat belts since 1960s, and specific requirements
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Table 2: Illustrative Examples of Similar Patent-CFR Pairs

Patent (i) CFR Part (j) ρi,j

(1)
Method and apparatus for ensuring
accessibility to emergency service via
VoIP or via PSTN (8,750,290)

Interconnected Voice Over Internet
Protocol Services (47 CFR 9)

0.81

(2) D-ring height adjuster (5,794,977)
Federal Motor Vehicle Safety Stan-
dards (49 CFR 571)

0.80

(3)
Combustion control for producing
low NOx emissions through use of
flame spectroscopy (5,480,298)

Acid Rain Nitrogen Oxides Emission
Reduction Program (40 CFR 76)

0.75

(4)
Promoting compliance by financial
institutions with due diligence re-
quirements (7,930,228)

Financial Recordkeeping And Re-
porting of Currency And Foreign
Transactions (31 CFR 103)

0.75

(5)
Radio telecommunication network
with selectable ring signal coverage
(5,809,396)

Frequency Allocations and Radio
Treaty Matters; General Rules and
Regulations (47 CFR 2)

0.70

(6)
Implantable system for glucose mon-
itoring using fluorescence quenching
(7,704,704)

Immunology and Microbiology De-
vices (21 CFR 866)

0.69

(7)
Systems and methods for providing a
customer service (10,453,087)

Truth in Lending (Regulation Z) (12
CFR 226)

0.67

(8)
Gaming method and apparatus uti-
lizing secondary software applica-
tions (8,187,103)

Minimum Technical Standards for
Gaming Equipment Used with the
Play of Class II Games (25 CFR 547)

0.61

are prescribed in CFR Title 49 Part 571 “Federal Motor Vehicle Safety Standards.” The

textual analysis indicates that this patent-CFR pair has a high similarity of 0.8.

Patent 5,480,298 is an example of innovations driven by environmental regulation. It

contains an invention for reducing nitrogen oxides (NOx) emissions from boiler burner com-

bustion. NOx are air pollutants that contribute to the formation of acid rain and have been

regulated at the federal level. CFR Title 40 Part 76 specifies emission limitations for NOx,

particularly from coal-fired utility units.

The patent titled “Promoting compliance by financial institutions with due diligence

requirements” (7,930,228) contains technologies “relate[d] to collecting, analyzing, storing

and processing data and information in connection with compliance with regulatory and/or

statutory legal requirements.” In particular, the patent document describes the need for
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financial institutions to comply with due diligence requirements imposed on accounts of

certain foreign financial institutions to address money laundering risks. CFR Title 31 Part

103 “Financial Recordkeeping And Reporting of Currency And Foreign Transactions” is

identified as the most similar CFR part to the patent, which specifies anti-money laundering

program requirements.

The other examples also suggest plausible connections between patents and regulations.

Patent 7,704,704 relates to systems, devices, and methods of sensing an analyte that can

be applied to glucose sensing, which is subject to the Food and Drug Administration’s

regulations on immunology and microbiology devices (21 CFR 866). The patent on “systems

and methods for providing a customer service” (10,453,087) includes systems and methods

for providing customer service such as secondary benefits of credit cards. Such application is

closely related to Regulation Z issued by the Federal Reserve Board that governs the credit

and lending industry.

These examples illustrate that the NLP method used correctly identify patents related to

federal regulations. The estimated textual similarity scores depend on the extent to which

the patent document explicitly references related regulatory requirements or compliance.

4.2 Descriptive Patterns in Regulatory Alignment

Aggregating pairwise similarities to the regulatory alignment measure allows us to observe

patent-level patterns, both over time and across technology classes and regulatory areas.

Trends Over Time

Figure 1 shows changes in patent-level regulatory alignment by year over the period 1976-

2020. As shown in Panels (a) and (b), both the raw count and proportion of regulatory-

aligned patents increased over time. Also, the annual average of regulatory alignment value

exhibits a similar increasing trend (Panel (c)). Given that the regulatory alignment measure

represents a sum of highly similar CFR parts, this trend could be driven by the increasing
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volume of federal regulations (Al-Ubaydli and McLaughlin, 2017). I therefore further scale

the annual average regulatory alignment values by CFR word counts. Panel (d) indicates

that, controlling for the volume of regulations, the extent to which patents are aligned

with existing regulations has still been increasing over time. While not the focus of this

paper, these trends imply that firms may have become more aware of the private value in

exploiting regulation through their innovation activities and are increasingly using it as a

tool to maintain their market positions.

Figure 1: Regulatory Alignment of Patents Over Time

Notes: Panel (a) plots the count of regulatory-aligned patents (i.e., patents with positive regulatory alignment

values (Ri > 0) in a given year. Panel (b) plots the proportion of regulatory-aligned patents in all patents

granted in a given year. Panel (c) plots the annual average of regulatory alignment values (Ri) over all

patents granted in a given year. Panel (d) plots the annual average of regulatory alignment values in a given

year scaled by the total word count of the CFR published in that year.
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Technology Classes

Using the Cooperative Patent Classification (CPC) of patents, I examine regulatory align-

ment across patents’ technology classes.8 As shown in Appendix B.1, the ICT class (G16) is

the leading technology class, both in terms of the share of patents with positive regulatory

alignment values and the average regulatory alignment value across patents. Approximately

31 percent of the patents in this class have a positive regulatory alignment value, and the

average value is 3.68. ICT technologies have modernized business operations in various areas,

and this analysis shows that they have also served as an effective tool for firms to respond

to the regulations they are subject to.

Other technology classes with high proportions of regulatory-aligned patents include sev-

eral chemistry-related classes (C08, C09, C10, and B04), refrigeration and heating systems

(F25), life-saving and fire-fighting devices (A62), and agriculture (A01). Innovations in these

technology classes can be driven by various regulations. For example, the technology classes

related to the production and handling of chemicals (C08, B04, and C09) are likely subject

to public health and workplace safety regulations; the fossil fuel (C10) and agriculture (A01)

classes are associated with environmental regulations; and refrigeration, cooling, and heating

systems (F25) are subject to energy efficiency standards.

I further verify these linkages by examining the most common CFR titles that the

regulatory-aligned patents within each CPC class are similar to. As shown in Figure 2,

regulatory-aligned patents in the ICT technology class are driven by regulations on food and

drugs, public health, and public welfare. A large number of patents related to refrigeration,

cooling, and heating systems are linked to energy and commercial practices regulations, as

these appliances and equipment have been governed by established energy efficiency stan-

dards in the U.S. since 1975. Regulatory-aligned patents from petroleum, gas or coke indus-

8The CPC scheme has a hierarchical structure, consisted of section, class, subclass, group, and subgroup.
A patent can be classified into multiple CPC groups that belong to multiple classes. My analysis is based
on the most common CPC class of a patent. For a full list of the CPC scheme, see https://www.uspto.

gov/web/patents/classification/cpc/html/cpc.html.
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Figure 2: CFR Titles Linked with Each CPC Class of Patents

Notes: The figure plots the five most common CFR titles that the regulatory-aligned patents within each

CPC class are similar to.

tries are primarily associated with food and drugs and environmental regulations. Section 6

discusses more firm- and industry-level patterns.

Regulatory Areas

From a different angle, the linkages between CPC classes and CFR titles also allow us to

investigate which regulatory areas have spurred the most regulation-driven innovations and

what technology classes these innovations fall into. Intuitively, areas with more regulations

should see a larger number of regulatory-aligned patents. Figure 3 presents the CFR titles
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with the largest numbers of similar patents. Food and drugs (Title 21), protection of envi-

ronment (Title 40), and telecommunication (Title 47) are the top three areas. Most of the

regulatory-aligned patents associated with food and drugs and environmental regulations

are technologies for producing and handling chemicals and organisms, such as medical and

veterinary equipment and processes, organic macromolecular compounds, organic chemistry,

and related measuring and testing procedures. Electric communication techniques are a

dominant class of innovations developed in response to telecommunication regulations, and

transportation regulations (Title 49) have spurred vehicle-related innovations. As shown

in Figures 2 and 3, the linkages between CPC classes and CFR titles are consistent with

expectations, providing additional external validity for the regulatory alignment measure.

5 Regulatory Alignment and Patent Value

Before investigating the potential effects of regulation-driven innovations on firm dynamics

and aggregate economic outcomes, I first evaluate the value of a regulation-driven innovation

at the patent level. I examine the relation between a patent’s regulatory alignment and its

scientific and economic value.

5.1 Scientific Value

In the model described in Section 2, regulation-driven innovations are different from the

innovations that improve the quality of a good. Although in the real world, there may

be no clear line separating the two, we can evaluate whether regulation-driven innovations

are associated with higher scientific value. The scientific value of patents has been studied

extensively and commonly measured by forward citations—the number of times that a patent

is cited in future patents (Lerner and Seru, 2022). However, patents continue to receive

citations over long periods (which could be up to 50 years), and we only observe citations up

30



Figure 3: CPC Classes Linked with Each CFR Title

Notes: The figure plots the five most common CPC classes of the patents that are similar to regulations

within each CFR title.

to the latest date of the available data (Hall and Trajtenberg, 2005).9 Due to this truncation

bias, raw counts of forward citations are not comparable with each other. For example, 10

citations received by a patent granted 20 years ago are not equivalent to 10 citations received

by a patent granted five years ago. I address this issue by scaling a patent’s raw count of

forward citations by the average number of forward citations received by all the patents

granted in the same year. Specifically, the measure of forward citations, C̃, is constructed

9When I collected the data, the citation data from PatentsView were updated through June 2022.
Therefore, the raw count of citations is the total number of citations that a patent had received as of June
2022.
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by:

C̃i =
Ci

1
N

∑
i′∈Pi Ci′

, (24)

where Ci is the total number of forward citations received by patent i, Pi is the set of patents

that were granted in the same year as patent i, and N is the number of patents in Pi.10

I use the following empirical specification to examine the relation between regulatory

alignment and forward citations:

asinh(C̃i) = α + βasinh(Ri) + γZi + εi, (25)

where Z includes a vector of control variables that may influence a patent’s forward cita-

tions as identified in the literature, including backward citations, backward citation age,

originality, grant lag, patent scope, number of claims, independent claims, dependent claim

ratio, first claim length, shortest independent claim length, technology class (CPC) fixed

effects, and grant year fixed effects or time trend. Since the forward citations and regula-

tory alignment variables contain many zero values, I take inverse hyperbolic sine (in lieu of

natural logarithm) of both variables in the regression (Chen and Roth, 2024; Bellemare and

Wichman, 2020). All the control variables are in logs except for originality, which ranges

from 0 to 1. Appendix C.1 includes detailed descriptions of the control variables.

The citation and other patent-level data come from the PatentsView database. Of the

6,912,239 patents with regulatory alignment estimates, I exclude the patents with no CPC

information, resulting in 6,900,262 patents used in this analysis. A substantial fraction of

the patents (27 percent, or 1,829,065 patents) did not receive any citations. Appendix C.2.1

shows the descriptive statistics for all variables.

As shown in Table 3, the regression results suggest no statistically significant relationship

between scientific value and regulatory alignment of patents. The results are robust when

controlling for patent-level characteristics and replacing the year fixed effects with a time

10For robustness checks, I also use forward citations that a patent receives within 5 or 10 years after it is
granted in lieu of truncation-adjusted forward citations in the regressions. The results are unchanged.
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trend variable (see full results in Appendix C.3.1). To compare with the results on economic

value of patents in the next section, I also restrict the data to patents assigned to publicly

traded firms only. As shown in Appendix C.3.2, the results are similar to the baseline using

all patents. These results indicate that regulation-driven innovations are likely to contribute

little to technological advancement, confirming the distinction between regulation-driven

innovations and quality-improving innovations in the model.

Table 3: Forward Citations and Regulatory Alignment of Patents

(1) (2) (3)
Regulatory Alignment 0.002 -0.002 -0.004

(0.004) (0.004) (0.005)
Patent Controls NO YES YES
Technology Class FE YES YES YES
Year FE YES YES NO
Time Trend NO NO YES
N 6,900,262 5,649,030 5,649,030
R2 0.148 0.206 0.201

Notes: This table shows the estimated coefficients in equation (25). Full estimation results are available in

Appendix C.3.1. Standard errors in parentheses. ***=statistically significant at p < 0.01. **=statistically

significant at p < 0.05. *=statistically significant at p < 0.1.

5.2 Economic Value

Kogan et al. (2017) argue that the private, economic value of innovations can be different

from their scientific value, because an innovation “may represent only a minor scientific

advance, yet be very effective in restricting competition, and thus generate large private

rents” (Kogan et al., 2017, p.666). They therefore introduce a measure of the economic

value of patents based on stock market reactions to patent grants (Kogan et al., 2017).

Specifically, they estimate the economic value of a patent by exploiting the innovating firm’s

stock price movements within a narrow window around the patent issuance, adjusted for the

component of the firm’s stock return that is unrelated to the patent (Kogan et al., 2017). The

estimated economic value is defined as “the present value of the monopoly rents associated

with that patent” (Kogan et al., 2017, p. 671).
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The model discussed in Section 2 predicts that regulation-driven innovations help the

innovating firm deter competitors and thus bring them additional monopoly rents. Based

on that, I expect to see a positive relationship between a patent’s regulatory alignment and

its economic value measured by Kogan et al. (2017). I estimate this relationship using the

following empirical specification:

asinh(Ei) = α + βasinh(Ri) + γasinh(C̃i) + δXi + µi, (26)

where Ei is the economic value of patent i as measured by Kogan et al. (2017), and X is a

vector of controls that includes the assignee firm’s log total assets as a proxy of firm size,

grant year fixed effects, and technology (CPC) class-specific grant year fixed effects or firm

fixed effects.

Since the economic value measure is based on stock returns, the data are only available for

patents assigned to publicly available firms. Upon merging the patent sample in this study

with Kogan et al. (2017)’s dataset (updated through 2022), there are 2,368,490 matched

patents (34 percent). The distribution of regulatory alignment values is similar to the full

sample, with 192,754 patents (eight percent) associated with positive values, a mean of 6.6,

and a median of 3.6. As Kogan et al. (2017)’s dataset also provides patent-CRSP firm match

data, I further merge the patent data with the CRSP/Compustat database to obtain data on

assignee firms’ total assets (Compustat: AT), deflated by the Consumer Price Index (CPI)

from the Bureau of Labor Statistics.11 Appendix C.2.2 shows the descriptive statistics of

the data used for this analysis.

Table 4 summarizes the estimation results. There is a strong and positive relationship

between regulatory alignment and economic value of patents. Specifically, a one percent

increase in a patent’s regulatory alignment is associated with a 0.01-0.12 percent increase in

11Kogan et al. (2017) matched patents’ assignee names with corporations in the CRSP/Compustat
merged database. Part of the matching is from the NBER patent project (https://sites.google.com/
site/patentdataproject/), and the remaining was conducted using a name matching algorithm devel-
oped by Kogan et al. (2017). Their updated dataset is available at https://github.com/KPSS2017/

Technological-Innovation-Resource-Allocation-and-Growth-Extended-Data.
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Table 4: Economic Value and Regulatory Alignment of Patents

(1) (2) (3) (4)
Regulatory Alignment 0.118*** 0.112*** 0.051*** 0.012***

(0.008) (0.008) (0.005) (0.002)
Forward Citations 0.349*** 0.308*** 0.053***

(0.014) (0.010) (0.005)
Firm Size 0.119*** 0.141*** 0.400***

(0.009) (0.009) (0.03)
Year FE YES YES YES YES
Class×Year FE NO NO YES NO
Firm FE NO NO NO YES
N 2,368,490 2,315,437 2,312,677 2,315,437
R2 0.030 0.069 0.175 0.810

Notes: This table shows the estimated coefficients in equation (26). Standard errors in parentheses. ***=sta-

tistically significant at p < 0.01. **=statistically significant at p < 0.05. *=statistically significant at p < 0.1.

its economic value, depending on the controls used. Alternatively, for a patent with a median

regulatory alignment value, being aligned with one additional CFR part (assuming ρ = 0.6)

is associated with a 0.2-2.0 percent increase in the economic value of that patent.12 The

coefficients on forward citations are also statistically significantly positive, a result consistent

with the finding of Kogan et al. (2017). The size of a patent’s assignee firm is also positively

associated with the patent’s economic value, as larger firms may have more capacity to

monetize the value of the patent. Taken together, these results suggest that regulation-

driven innovations tend to achieve minimal scientific advance but generate tangible private

rents. Next I further examine the relationship between regulation-driven innovations and

firms’ private gains using firm-level data.

6 Innovation-Regulation Alignment and Firm Outcomes

To further understand how the innovation activity driven by regulation might influence busi-

ness dynamism, I aggregate the patent-level regulatory alignment measure into a firm-level

12As mentioned in Section 3.3, the median regulatory alignment value for the patents with positive values
is 3.6. For a patent with the median value, as ρ increases by 0.6, its regulatory alignment value R increases
by 0.6, which is approximately 17 percent increase in its regulatory alignment.
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measure of innovation-regulation alignment. In this section, I describe the approach to ag-

gregating the measure and present empirical evidence on its contributions to firm outcomes.

6.1 Firm-Level Innovation-Regulation Alignment

Following the approach in Kogan et al. (2017) to aggregating their economic value mea-

sure, I measure firm-level innovation-regulation alignment by summing up all the regulatory

alignment values of patents that were granted to the firm in a year:

ξf,t =
∑
i∈Pf,t

Ri, (27)

where ξf,t is firm f ’s innovation-regulation alignment in year t, and Pf,t is the set of patents

issued to firm f in year t.

As mentioned in Section 5.2, the patent-firm crosswalk from Kogan et al. (2017) matches

2,368,490 patents in the sample of this study. Those patents were assigned to 7,640 firms,

covering 59,237 firm-year observations over the period of 1976-2020. Figure 4 divides firms’

annual total assets into 100 quantiles and plots the log of the average innovation-regulation

alignment (ξf,t) in each quantile. As shown in Panel (a), innovation-regulation alignment is

monotonically increasing in firm size. A possible factor driving this pattern is that larger

firms tend to file more patents. Therefore, I divide a firm’s innovation-regulation alignment

in a given year by the number of patents assigned to the firm in that year. Panel (b) plots

the average innovation-regulation alignment per patent over the 100 quantiles of total assets.

Controlling for patent counts, innovation-regulation alignment is still positively correlated

with firm size. This observation is consistent with the model implication suggesting that

larger firms optimally choose to adopt regulatory-aligned innovations to reduce regulatory

burden.

Appendix D shows the industries (SIC-4) with the highest average per-patent innovation-

regulation alignment and the leading firms within each industry. Industries with feder-
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Figure 4: Innovation-Regulation Alignment and Firm Size

Notes: The figure plots the relation between firm size and firm innovation-regulation alignment. I group the

firm-year innovation-regulation alignment data into 100 quantiles based on firms’ total assets. In Panel (a),

the horizontal axis plots the log of the average total assets in each quantile, and the vertical axis plots the

log of the average innovation-regulation alignment (ξf,t) in each quantile. In Panel (b), the horizontal axis

plots the log of the average total assets in each quantile, and the vertical axis plots the log of the average

innovation-regulation alignment per patent in each quantile.

ally sponsored or federally chartered firms, such as Freddie Mac and Fannie Mae, tend to

hold patents most closely aligned with federal regulations. Additionally, several medical

and finance-related industries are also among those with the highest levels of innovation-

regulation alignment.

6.2 Firm Growth and Market Power

Propositions 1 and 2 indicate that adopting a regulation-driven innovation in the production

process leads to firm growth, and the growth is larger if the innovation is more aligned with

regulations. While the growth of individual firms can contribute to overall economic growth,

it might instead represent only an increase in their market share. The model in Section

2 implies the latter. According to Proposition 3, in a dynamic setting, incumbent firms

face additional incentives to adopt regulation-driven innovations, because these innovations

help them deter competitors and potentially increase their market power. I examine these

implications empirically using the measure of firm-level innovation-regulation alignment.
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Methodology and Data

Because firm-level innovation-regulation alignment is strongly increasing in firm size, as

shown in Figure 4, it is important to ensure that fluctuations in size are not driving the re-

lationship between innovation-regulation alignment and economic outcomes in this analysis.

Following Kogan et al. (2017), I scale the levels of innovation-regulation alignment by firm

size as following:

ξ̃f,t =
ξf,t
Af,t

, (28)

where Af,t is total assets of firm f in year t. I also control for various measures of firm size

in the empirical specifications.

As a traditional measure of innovative output, citation-weighted patent counts reflect

the intrinsic (or technological) value of innovation (Abrams et al., 2013). As discussed in

Section 5.1, this value is less likely driven by the extent to which the patent is aligned with

regulation, whereas it has been demonstrated to be linked to firm performance (Bloom and

Van Reenen, 2002). Therefore, I include a measure of citation-weighted patent counts in this

analysis. The measure is constructed as follows:

θ̃f,t =
1

Af,t

∑
i∈Pf,t

(1 + C̃i), (29)

where Pf,t is the set of patents assigned to firm f in year t, and C̃ is truncation-adjusted

forward citations of patent i from equation (24). For similar considerations regarding firm

size, the citation-weighted patent count is also scaled by total assets of firm f in year t.

In this analysis, I assess two categories of firms outcomes: growth in size and market

power. The empirical specification is:

logYf,t+τ − logYf,t = ατ + βτ ξ̃f,t + γτ θ̃f,t + δτWf,t + νf,t+τ , (30)

where Y is one of the firm outcome variables, including four indicators of firm growth:
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(a) profits, (b) output, (c) capital stock, and (d) employment; and two indicators of market

power: (e) market share and (f) markup; the vector W includes the log values of capital stock

and number of employees to control for firm size, the lagged value of the dependent variable,

industry (SIC-4) fixed effects, and year fixed effects. Given that firms in the same industry

are generally subject to the same regulations, this specification focuses on the variation in

how firms subject to the same regulations adapt their innovation activities to regulations.

In alternative specifications, I replace industry fixed effects with industry-specific year fixed

effects or firm fixed effects to account for unobservable factors at the industry-year or firm

level. Standard errors are clustered by both firm and year. I consider horizon τ of one to

five years.

The original dataset covers all firms in the CRSP/Compustat merged database from

1976 to 2020, including 278,929 firm-year observations. I merge this dataset with the data

on firm-level innovation-regulation alignment. If firm f was granted no patents in year t,

I set both the scaled innovation-regulation alignment ξ̃f,t and the scaled citation-weighted

patent count θ̃f,t to zero. I omit the industries in which no firms were granted a patent in the

sample, since the analysis focuses on within-industry variation.13 That results in 275,977

firm-year observations, covering 25,607 unique firms from 414 SIC-4 industries. Of those

firms, 7,279 firms (28 percent) were granted at least one patent during this time frame, and

2,938 firms (11 percent) have a positive innovation-regulation alignment value in at least one

year. To minimize the impact of outliers in the analysis, I trim the data at the one percent

level for all variables.14

The four indicators of firm growth in size are defined as follows: profits are sales (Compu-

stat: SALE) minus cost of goods (Compustat: COGS), deflated by the CPI; output is sales

plus change in inventories (Compustat: INVT), deflated by the CPI; capital stock (Compu-

13There are 35 SIC-4 industries that never received a patent in the sample, such as Prepared Fresh or
Frozen Fish and Seafoods (2092), Screw Machine Products (3451), and Railroad Switching and Terminal
Establishments (4013).

14Given that the innovation-regulation alignment variable (ξ̃f,t) and the citation-weighted patents variable

(θ̃f,t) contains many zero values, the trimming only discards extreme values above the 99th percentile for
those two variables.
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stat: PPEGT) is deflated by the non-residential private fixed investment price index from

the National Income and Product Accounts provided by the Bureau of Economic Analysis;

and employment is number of employees (Compustat: EMP).

As an indicator of market power, I calculate market share as firm f ’s share of sales in

the industry’s (SIC-4) total sales in year t. Another common indicator of market power

is markup, which measures how much firms are able to price their goods above marginal

cost. I estimate markups for the firms under analysis using the production approach from

De Loecker et al. (2020). The markup is defined as the wedge between a variable input’s

expenditure share in revenue and that input’s output elasticity:

Mf,t = ηvs,t
Pf,tQf,t

P v
f,tVf,t

, (31)

where ηv is the output elasticity of the variable input V , Pf,tQf,t is firm f ’s revenue in year t,

and P v
f,tVf,t is the cost of the variable input. I use De Loecker et al. (2020)’s estimate of time-

varying and sector-specific (NAICS-2) output elasticity for ηs,t, as well as observed revenue

and input expenditure from Compustat (SALE and COGS) in the estimation. Appendix

E.1 presents summary statistics for the data used in the firm-level analysis.

Estimation Results

Table 5 shows the estimated coefficients βτ using the baseline specification. Consistent with

the model implications, we see that innovation-regulation alignment is positively associated

with firm growth in terms of profits, output, capital, and employment. Over a five-year

horizon, a one standard deviation increase in innovation-regulation alignment is associated

with a 0.7 percentage-point increase in profits and output growth, a 0.5 percentage-point

increase in capital investment growth, and a 0.9 percentage-point increase in employment

growth, on average.15 A median-sized firm that is perfectly aligned with one additional CFR

15Note that the standard deviation (0.002) is calculated across all firm-year observations under analysis,
including firms with no patent in a year. For firm-year observations with a positive innovation-regulation
alignment value, a one standard deviation increase is 0.007, nearly four times than that of the entire sample,
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part in its patented innovations tends to grow 1.0 percentage point faster in profits and

output, 0.7 percentage point faster in capital investment, and 1.3 percentage points faster

in employment, all else being equal.16

We also observe that innovation-regulation alignment is positively associated with growth

in market share and markup. A one standard deviation increase in a firm’s innovation-

regulation alignment is associated with a 0.5 percentage-point increase in market share

growth and a 0.4 percentage-point increase in markup growth over a five-year horizon. Equiv-

alently, if a median-sized firm gets aligned with one additional CFR part, on average, its

market share and markup will grow 0.7 percentage point and 0.6 percentage point faster,

respectively.

Table 5: Firm Outcomes and Innovation-Regulation Alignment

Horizon
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

(a) Profit 1.224*** 1.639*** 2.713*** 3.341*** 3.399***
(0.362) (0.499) (0.693) (0.926) (1.170)

(b) Output 0.812* 1.506*** 2.803*** 2.449** 3.287***
(0.407) (0.492) (0.749) (0.960) (1.032)

(c) Capital 0.468* 0.636 1.608** 1.967** 2.488**
(0.272) (0.482) (0.716) (0.880) (1.052)

(d) Employment 1.137*** 1.878*** 3.017*** 3.629*** 4.357***
(0.266) (0.459) (0.676) (0.963) (1.061)

(e) Market share 0.700 1.618*** 2.420*** 2.887*** 2.557**
(0.425) (0.537) (0.827) (1.067) (1.231)

(f) Markup 0.782*** 1.206*** 1.622*** 1.560*** 2.120***
(0.267) (0.422) (0.520) (0.571) (0.567)

Notes: The table shows the estimated coefficients, βτ , in equation (30) for τ ∈ {1, 2, 3, 4, 5}. Full estimation

results are available in Appendix E.2. Standard errors in parentheses. ***=statistically significant at

p < 0.01. **=statistically significant at p < 0.05. *=statistically significant at p < 0.1.

so the magnitude of effect can be larger.
16I consider a firm with a median number of total assets in the data, which is approximately $350 millions.

Being perfectly aligned with one additional CFR part means having an additional ρi,j = 1 and thus a one-
unit increase in Ri and ξf,t. Scaled by total assets, that converts to an approximately 0.0029 unit increase

in ξ̃f,t.
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6.3 Competitors’ Growth

While regulation-driven innovation has a positive impact on the innovating firm’s economic

outcomes, it creates relative disadvantage for the firm’s competitors. As a result, I expect

that a firm’s innovation-regulation alignment is negatively associated with its competitors’

growth. To test this hypothesis, I examine the relationship between a firm’s innovation-

regulation alignment and its competitors’ growth, controlling for competitors’ innovation-

regulation alignment. I define the innovation-regulation alignment of firm f ’s competitors

as:

ξ̃I\f,t =

∑
f ′∈I\f ξf ′,t∑
f ′∈I\f Af ′,t

, (32)

where I\f is the set of firm f ’s competitors, defined as all firms in the same industry (SIC-4)

excluding firm f in year t. The empirical specification is similar to equation (30):

logYI\f,t+τ − logYI\f,t = ατ + βτ ξ̃f,t + +γτ θ̃f,t + β′
τ ξ̃I\f,t + γ′τ θ̃I\f,t + δτWI\f,t + νI\f,t+τ , (33)

where YI\f is one of competitors’ economic variables, including (a) profits, (b) output, (c)

capital, and (d) employment; ξ̃ is the firm’s or its competitors’ scaled innovation-regulation

alignment; θ̃ is the firm’s or its competitors’ citation-weighted patent counts to control for

the technological value of innovative output; and the vector W includes the log values of

competitors’ capital stock and number of employees, the lagged value of the dependent

variable Y , industry (SIC-4) fixed effects, and year fixed effects. Descriptive statistics for

competitors’ variables are available in Appendix F.1.

As shown in Table 6, the estimation results are consistent with the expectation. In gen-

eral, a firm’s innovation-regulation alignment is negatively associated with its competitors’

growth in profits, output, and capital, but not employment. If a median-sized firm gets

aligned with one additional CFR part in its innovative output, its competitors will expe-

rience an approximately 0.4 percentage-point slowdown in their total profits, output, and

capital growth. One possible explanation for the insignificant finding for employment is
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barriers to labor reallocation due to firing costs, which has been well-documented in the lit-

erature (Mukoyama and Osotimehin, 2019; Moscoso Boedo and Mukoyama, 2012; Da-Rocha

et al., 2019). The existence of firing costs makes it harder for firms to adjust labor (com-

pared to capital investment and output) when encountering cost disadvantages, so we do not

see a similar effect of a firm’s regulation-driven innovations on its competitors’ employment

growth.

Table 6: Firm Innovation-Regulation Alignment and Competitors’ Growth

Horizon
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

(a) Profit -0.411 -0.951** -1.447*** -1.620** -1.595*
(0.246) (0.421) (0.511) (0.651) (0.799)

(b) Output -0.174 -0.643 -1.152** -1.483** -1.540**
(0.232) (0.386) (0.514) (0.582) (0.712)

(c) Capital -0.353 -0.790** -1.380** -1.769** -1.469*
(0.244) (0.389) (0.574) (0.707) (0.865)

(d) Employment -0.069 -0.347 -0.532 -0.812 -0.747
(0.220) (0.376) (0.522) (0.629) (0.753)

Notes: The table shows the estimated coefficients, βτ , in equation (33) for τ ∈ {1, 2, 3, 4, 5}. Full estimation

results are available in Appendix F.2. Standard errors in parentheses. ***=statistically significant at p <

0.01. **=statistically significant at p < 0.05. *=statistically significant at p < 0.1.

These results have some macroeconomic implications. If regulation-driven innovations

benefit only the innovating firm while harming others, then the variation in such innovations

could influence aggregate economic outcomes. I explore this in the next section.

7 Macroeconomic Implications of Innovation-Regulation

Alignment

To uncover macroeconomic implications of regulation-driven innovations, I first need an

economy-wide measure of innovation-regulation alignment. I aggregate the patent-level reg-

ulatory alignment measure into a time series index by estimating the following fixed effects
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regression:

Ri = ut(i) + vI(i) + ϵi, (34)

where Ri is patent i’s regulatory alignment value from equation (23), ut(i) is year-quarter

fixed effects based on patent i’s grant date, and vI(i) is industry (SIC-3) fixed effects based

on the assignee firm’s industry. The estimated coefficients on ut(i) constitutes a quarterly

index of aggregate innovation-regulation alignment, Rt. All the patents with the industry

information are used in the estimation, including 2,368,490 patents. Appendix G plots the

quarterly index as well as its growth rates over the period of 1976-2020. The index exhibits

a monotonically increasing trend, similar to the trend discussed in Section 4.2.

I examine the impulse responses of macroeconomic variables to an upward shock in the

aggregate innovation-regulation alignment using a local projection method (Jordà, 2005).

Local projections impose less restrictive assumptions on data dynamics compared to the

standard vector autoregression (VAR). This method has been widely used for estimating

impulse response functions in the context of text-based time series measures (Shapiro et al.,

2022; Caldara et al., 2020; Ahir et al., 2022). The estimation entails a distinct linear regres-

sion for each forecast horizon h with the following specification:

ym,t+h = αhm + βhm∆Rt +
3∑

τ=1

γhm,τ∆Rt−τ + Ahm

3∑
τ=0

Yt−τ + εm,t+h, (35)

where ym is one of the macroeconomic variables: log GDP, log employment, log investment,

and log S&P 500; ∆R is the growth rate of aggregate innovation-regulation alignment,

as approximated by ∆Rt = log(Rt) − log(Rt−1), to separate the potential impact of the

increasing quantity of regulations over time; and the matrix Y includes contemporaneous

and lagged values of the macroeconomic variables including log GDP, log employment, log

investment, log S&P 500, and log CPI. Based on multiple information criteria, I choose

three lags for the variables.17 The impulse response of economic variable ym to a shock in

17AIC and FPE suggest three lags, while HQIC suggests two lags, and SBIC suggests one. Using two lags
instead of three generates similar results.
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the growth of innovation-regulation alignment is given by the estimates of βhm. I consider

horizons up to 24 quarters after the shock (h = {0, 1, ..., 24}).

I use quarterly data on real GDP and real gross private domestic investment from the

Bureau of Economic Analysis. Employment is the quarterly number of all nonfarm employees

reported by the Bureau of Labor Statistics. S&P 500 and CPI are quarterly means of the

index values from the S&P Dow Jones Indices LLC and the Bureau of Labor Statistics,

respectively.

Figure 5 plots the impulse responses of GDP, employment, investment, and S&P 500

to a one-standard-deviation upward shock in the growth of aggregate innovation-regulation

alignment, with point estimates as well as 68 percent and 90 percent confidence bands.

The estimates show that a shock to the innovation-regulation alignment growth reduces

aggregate output, employment, investment, and stock prices. Although most of the drops

are only significant according to the 68 percent confidence band, the magnitude of the effects

is noticeable. The maximum drops in output and employment reach 0.4 percent and 0.5

percent, respectively. The potential effects on investment and stock prices are larger, with

private investment decreasing by up to 1.6 percent and the S&P 500 index dropping by 3.1

percent after a shock.

These effects are comparable in size to the impact of other macroeconomic shocks. Lead-

ing studies using various identification strategies generally suggest that a monetary policy

shock equal to 100 basis-point surprise increase in the federal funds rate is associated with

a peak drop of 0.6-5.0 percent in output (Ramey, 2016). Barro and Redlick (2011) find

that an unanticipated one-percentage-point increase in the average marginal income tax rate

lowers GDP by around 0.5 percent. Baker et al. (2016) demonstrate that a 90-point upward

shock to their economic policy uncertainty measure (equal in size to the change between the

periods before and after the financial crisis) is associated with maximum drops of 1.1 per-

cent in output, 0.4 percent in employment, and 6.0 percent in gross aggregate investment.

Therefore, the macroeconomic effects of innovation-regulation alignment are economically
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significant.

Figure 5: Impulse Responses

Notes: The figures plot impulse response functions to a one-standard-deviation upward shock to the growth of

aggregate innovation-regulation alignment. The aggregate innovation-regulation alignment, R, is estimated

using equation (35). Shaded areas show 68 percent (dark gray) and 90 percent (light gray) confidence bands.

8 Conclusion

In this paper, I explore regulation-driven innovations—those developed to comply with or

circumvent legal and regulatory requirements—and their economic implications. Using text

data from U.S. patents issued between 1976 and 2020 and the CFR, I propose a mea-

sure of regulatory alignment for regulation-driven innovations based on semantic similarities

between patent texts and federal regulations. Consistent with the predictions of a Schum-

peterian growth model, regulation-driven innovations identified using the measure move in
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tandem with the economic value of patents, as well as with firm growth in size and market

power. However, aggregating the measure suggests that innovation-regulation alignment is

negatively associated with overall economic growth.

Through both theoretical modeling and empirical evidence, this study demonstrates that

regulation-driven innovations can provide private gains to firms by reducing regulatory bur-

dens and enhancing their competitive positions. However, these innovations may impede

economic growth by increasing barriers to entry, altering resource reallocation, and slowing

creative destruction.

While this study highlights the economic impact of government regulations, it is impor-

tant to acknowledge the societal benefits created by regulations, such as reduced pollution

and safe products and workplaces. These societal benefits are not formally considered in

this study. Some of the economic costs may be worth paying to achieve the intended so-

cial objectives of regulation. However, when designing new regulations or revising existing

ones, policymakers should carefully weigh societal benefits against potential economic costs,

such as those demonstrated in this study, to avoid unintended economic consequences or

unnecessary regulatory burdens. This is particularly important as policymakers strive for a

regulatory environment that is responsive to the rapid development of emerging technologies

such as artificial intelligence (AI). With the recently increasing demand for AI regulation,

policymakers should carefully consider a regulatory approach that not only addresses poten-

tial risks posed by these novel technologies but also encourages technological advancement

and competition.

This paper focuses on a particular type of innovations—those developed in response

to regulations—and studies how they relate to firm dynamics and economic growth. Future

work could investigate the causal effects of regulation on the broader technological innovation,

examining the innovations contributing to technological advancement and those forgone due

to regulatory constraints. Additionally, examining how different forms of regulations—such

as command-and-control vs. market-based regulations—impact innovation activities could
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offer a more nuanced understanding of the interplay between innovation and regulation.
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Appendices

A Distribution of Patent-CFR Pairwise Similarities

A.1 Distribution of Maximum Similarities for All Patents

Notes: The figure plots the histogram of the maximum pairwise similarities (ρ) between a patent and the

CFR parts published during the patent grant year and the preceding five years for all patents in the sample

(N = 6, 912, 239).
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A.2 Distribution of Similarities for a Random Sample of Patents

Notes: The figure plots the histogram of all pairwise similarities (ρ) between a patent and the CFR parts

published during the patent grant year and the preceding five years for a random sample of 1,000 patents.
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A.3 Within-Patent Distribution of Similarities

Notes: The figure plots the histogram of pairwise similarities (ρ) between a randomly selected patent and

the CFR parts published during the patent grant year and the preceding five years.
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B Descriptive Patterns of Patent Regulatory Align-

ment

B.1 Regulatory Alignment for Select Technology Classes

CPC Class
Total
Patents

Regulatory-
Aligned
Patents

Share of
Regulatory-
Aligned
Patents

Average
Ri

Information and Communication
Technology (ICT) Specially Adapted
for Specific Application Fields (G16)

10,249 3,188 31% 3.68

Organic Macromolecular Com-
pounds; Their Preparation Or
Chemical Working-up; Composi-
tions Based Thereon (C08)

127,864 33,724 26% 1.48

Centrifugal Apparatus Or Machines
For Carrying-out Physical Or Chem-
ical Processes (B04)

3,272 811 25% 0.70

Information or Communication
Technologies Having an Impact on
Other Technology Areas (Y04)

286 66 23% 1.65

Refrigeration Or Cooling; Combined
Heating And Refrigeration Systems;
Heat Pump Systems; Manufacture
Or Storage Of Ice; Liquefaction So-
lidification Of Gases (F25)

24,178 4,375 18% 1.61

Checking-devices (G07) 34,714 6,208 18% 1.18
Life-saving; Fire-fighting (A62) 7,630 1,297 17% 2.21
Petroleum, Gas Or Coke Industries;
Technical Gases Containing Carbon
Monoxide; Fuels; Lubricants; Peat
(C10)

33,533 5,493 16% 1.14

Dyes; Paints; Polishes; Natural
Resins; Adhesives; Compositions
Not Otherwise Provided For; Appli-
cations Of Materials Not Otherwise
Provided For (C09)

50,820 8,321 16% 0.97

Agriculture; Forestry; Animal Hus-
bandry; Hunting; Trapping; Fishing
(A01)

90,171 14,526 16% 1.18

Notes: This table lists the ten CPC classes with the highest proportions of regulatory-aligned patents over

the period from 1976 to 2020. The average Ri represents the average regulatory alignment value of all

patents within each CPC class.
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C Regulatory Alignment and Patent Value

C.1 Description of Control Variables

Backward citations are the number of patents cited in a patent, measuring its reliance on

previous technology (Jaffe and De Rassenfosse, 2019). Backward citation age refers to the

average time (i.e., days) between the grant of a patent and the grant of the cited patents. It

measures the proximity of the citing patent to the technological frontier, as technologically

influential patents are more likely to cite new patents (Higham et al., 2021; Benson and

Magee, 2015). Originality quantifies the diversity of technological classifications of a patent’s

backward citations. As in Trajtenberg et al. (1997); Higham et al. (2021), I define the

originality of patent i as:

Oi = 1 −
∑
C

(P i
C)2, (36)

where P i
C is the proportion of the backward citations from patent i to other patents in a

technology class C from the Cooperative Patent Classification (CPC) scheme. A larger Oi

indicates broader technological roots of the underlying research for patent i.

Grant lag is the time (i.e., days) between the application date and the grant date of

a patent. Patents of lower quality are likely to take longer to negotiate and examine and

thus associated with a longer grant lag (Higham et al., 2021; Harhoff and Wagner, 2009;

Régibeau and Rockett, 2010; Squicciarini et al., 2013). Patent scope, or information content

of a patent, is measured by the number of CPC classes under which the patent is classified.

The number of independent claims and dependent claim ratio (i.e., number of dependent

claims per independent claim) measure the scope of legal rights granted to the patent owner

(Higham et al., 2021; De Rassenfosse and Jaffe, 2018; Marco et al., 2019; Lanjouw and

Schankerman, 2001; Lanjouw et al., 1998). The length of the first claim and the shortest

independent claim reflect claim breadth, as additional words tend to correspond to more

limitations to patent claims (Ashtor, 2019; Kuhn and Thompson, 2019; Marco et al., 2019).
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C.2 Descriptive Statistics of Patent Variables

C.2.1 Variables for Scientific Value Analysis

Variable N Mean Median
Std.
Dev.

Min Max

Forward citations (C̃i) 6,900,262 0.74 0.25 2.44 0.00 277.81

Regulatory alignment
(Ri)

6,900,262 0.53 0.00 3.94 0.00 861.02

Backward citations 6,900,262 14.93 6.00 57.49 0.00 5,841.00
Backward citation age
(thous. days)

6,463,657 5.02 4.01 3.81 0.02 111.11

Originality 6,123,090 0.59 0.66 0.27 0.00 1.00
Grant lag (thous. days) 6,900,120 0.99 0.85 0.59 0.00 109.95
CPC number 6,900,262 1.71 1.00 0.96 1.00 24.00
Claim number 6,900,262 15.56 14.00 11.25 1.00 887.00
Independent claim
number

6,548,198 2.62 2.00 2.02 0.00 248.00

Dependent claim ratio 6,548,038 6.06 5.00 5.18 0.00 886.00
First claim length 6,548,197 185.09 162.00 133.01 2.00 77,533.00
Independent claim
length

6,548,038 163.03 142.00 120.74 1.00 77,533.00

C.2.2 Variables for Economic Value Analysis

Variable N Mean Median
Std.
Dev.

Min Max

Economic value (Ei) 2,368,490 11.09 3.49 30.34 1.73e-4 2,573.78
Regulatory alignment
(Ri)

2,368,490 0.54 0.00 4.02 0.00 667.09

Forward citations (C̃i) 2,368,490 0.87 0.29 3.11 0.00 225.53

Total assets (tril. $) 2,315,437 77.25 33.62 148.28 2.04e-4 3,206.47
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C.3 Full Regression Results on Forward Citations

C.3.1 Using all patents

(1) (2) (3)
Regulatory alignment 0.002 -0.002 -0.003

(0.004) (0.004) (0.005)
Backward citations 0.128*** 0.134***

(0.014) (0.014)
Backward citation age -0.108*** -0.112***

(0.010) (0.009)
Originality -0.032 -0.049

(0.040) (0.041)
Grant lag 0.009 0.025***

(0.011) (0.009)
CPC number 0.093*** 0.086***

(0.009) (0.007)
Claim number 0.178*** 0.189***

(0.024) (0.028)
Independent claim number -0.042 -0.050*

(0.027) (0.030)
Dependent claim ratio -0.055** -0.064***

(0.013) (0.015)
First claim length 0.044*** 0.037***

(0.008) (0.006)
Independent claim length 0.007 0.005

(0.007) (0.007)
Technology class FE YES YES YES
Patent year FE YES YES NO
Time trend NO NO YES
N 6,900,262 5,649,030 5,649,030
R2 0.148 0.206 0.201

Notes: This table shows the estimated coefficients in equation (25). Standard errors in parentheses. ***=sta-

tistically significant at p < 0.01. **=statistically significant at p < 0.05. *=statistically significant at p < 0.1.
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C.3.2 Using patents assigned to publicly traded firms

(1) (2) (3)
Regulatory alignment 0.001 -0.002 -0.003

(0.004) (0.004) (0.004)
Backward citations 0.127*** 0.133***

(0.017) (0.017)
Backward citation age -0.122*** -0.126***

(0.011) (0.012)
Originality -0.023 -0.046

(0.045) (0.044)
Grant lag 0.023* 0.038***

(0.013) (0.013)
CPC number 0.093*** 0.089***

(0.011) (0.009)
Claim number 0.180*** 0.196***

(0.033) (0.037)
Independent claim number -0.032 -0.046

(0.033) (0.035)
Dependent claim ratio -0.045** -0.058***

(0.017) (0.019)
First claim length 0.054*** 0.051***

(0.009) (0.007)
Independent claim length 0.001 -0.004

(0.008) (0.009)
Technology class FE YES YES YES
Patent year FE YES YES NO
Time trend NO NO YES
N 2,365,659 1,999,904 1,999,904
R2 0.138 0.191 0.185

Notes: This table shows the estimated coefficients in equation (25), using only patents assigned to publicly

traded firms. Standard errors in parentheses. ***=statistically significant at p < 0.01. **=statistically

significant at p < 0.05. *=statistically significant at p < 0.1.
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D Industries with the Highest Innovation-Regulation

Alignment

SIC-4 Industry Name Leading Firms
6111 Federal and Federally-Sponsored

Credit Agencies
Federal Home Loan Mortg Corp
Federal National Mortga Assn
Navient Corp

7363 Help Supply Services Volt Info Sciences Inc
Trueblue Inc
Kforce Inc

6792 Oil Royalty Traders Cross Timbers Royalty Trust

6035 Savings Institutions, Federally
Chartered

Rome Bancorp Inc
Washington Mutual Inc
Harrington West Finl Group

6324 Hospital and Medical Service Plans Aetna Inc
Elevance Health Inc
Unitedhealth Group Inc

6099 Functions Related to Depository
Banking, Not Elsewhere Classified

Xoom Corp
Moneygram International Inc
Lml Payment Systems Inc

6200 Security & Commodity Brokers,
Dealers, Exchanges & Services

Marketaxess Holding Inc
CME Group Inc
Intercontinental Exchange

5047 Medical, Dental, and Hospital
Equipment and Supplies

Henry Schein Inc
Mwi Veterinary Supply
Fisons Plc

4513 Air Courier Services Fedex Corp
Airborne Inc
Purolator Courier Corp

5912 Drug Stores and Proprietary Stores Express Scripts Holding Co
Omnicare Inc
Medco Health Solutions Inc

Notes: The table lists the industries with the highest average per-patent innovation-regulation alignment

values over the period of 1976-2020, as well as the top three firms with the highest average per-patent

innovation-regulation alignment values within each industry. Per-patent innovation-regulation alignment is

calculated as a firm’s innovation-regulation alignment in a given year (ξf,t) divided by the number of patents

assigned to the firm in that year.
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E Firm Growth and Market Power

E.1 Descriptive Statistics of Firm Variables

Variable N Mean Median
Std.
Dev.

Min Max

Innovation-regulation
alignment, scaled (ξ̃f,t)

250,345 3.39e-4 0.00 2.22e-3 0.00 0.03

Citation-weighted patent
counts (θ̃f,t)

250,345 9.10e-3 0.00 0.04 0.00 0.40

Profit growth 206,574 0.06 0.05 0.43 -5.70 6.14
Output growth 204,244 0.05 0.04 0.40 -7.17 7.10
Capital growth 194,791 0.11 0.07 0.36 -7.40 8.02
Employment growth 209,093 0.05 0.03 0.35 -9.30 8.39
Market share growth 221,104 0.03 0.01 0.44 -8.87 8.93
Markup growth 210,835 7.06e-4 −1.31e-4 0.29 -4.74 5.04

Notes: Profit, output, capital, employment, TFP, and markup are all in first difference of log, which approx-

imates the percentage change in the variable.
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E.2 Full Estimation Results

The following tables show the estimated coefficients in equation (30) for τ ∈ {1, 2, 3, 4, 5}.

Standard errors in parentheses. ***=statistically significant at p < 0.01. **=statistically

significant at p < 0.05. *=statistically significant at p < 0.1.

E.2.1 One-Year Growth (logYf,t+1 − logYf,t)

(1) (2) (3) (4) (5) (6)

Profit Output Capital Labor
Market
Share

Markup

Reg (ξ̃f,t) 1.224*** 0.812* 0.468* 1.137*** 0.700 0.782***
(0.362) (0.407) (0.272) (0.266) (0.425) (0.267)

Cites (θ̃f,t) 0.108** 0.010 -0.032 -0.108*** -0.014 0.045
(0.045) (0.043) (0.032) (0.035) (0.039) (0.029)

log(Yf,t−1) -0.070*** -0.077*** -0.128*** -0.088*** -0.083*** -0.097***
(0.004) (0.004) (0.008) (0.008) (0.005) (0.004)

log(capitalf,t) 0.022*** 0.019*** 0.073*** 0.020*** 0.020*** 0.003
(0.002) (0.002) (0.009) (0.002) (0.002) (0.002)

log(empf,t) 0.040*** 0.052*** 0.048*** 0.056*** 0.054*** -0.003
(0.003) (0.003)) (0.003) (0.008) (0.004) (0.002)

Year FE YES YES YES YES YES YES
Industry
FE

YES YES YES YES YES YES

N 152,737 150,689 166,328 164,282 161,285 152,825
R2 0.037 0.045 0.062 0.029 0.041 0.027
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E.2.2 Two-Year Growth (logYf,t+2 − logYf,t)

(1) (2) (3) (4) (5) (6)

Profit Output Capital Labor
Market
Share

Markup

Reg (ξ̃f,t) 1.639*** 1.506*** 0.636 1.878*** 1.618*** 1.206***
(0.499) (0.492) (0.482) (0.459) (0.537) (0.422)

Cites (θ̃f,t) 0.211*** 0.030 -0.042 -0.144** 0.013 0.039
(0.068) (0.067) (0.060) (0.056) (0.065) (0.033)

log(Yf,t−1) -0.096*** -0.106*** -0.190*** -0.115*** -0.129*** -0.163***
(0.006) (0.007) (0.013) (0.010) (0.008) (0.007)

log(capitalf,t) 0.031*** 0.034*** 0.093*** 0.035*** 0.039*** 0.007**
(0.004) (0.004) (0.013) (0.003) (0.003) (0.002)

log(empf,t) 0.044*** 0.054*** 0.079*** 0.050*** 0.066*** -0.006**
(0.005) (0.006) (0.004) (0.012) (0.006) (0.003)

Year FE YES YES YES YES YES YES
Industry
FE

YES YES YES YES YES YES

N 140,649 139,053 152,887 150,847 148,380 138,786
R2 0.050 0.056 0.087 0.044 0.057 0.053

E.2.3 Three-Year Growth (logYf,t+3 − logYf,t)

(1) (2) (3) (4) (5) (6)

Profit Output Capital Labor
Market
Share

Markup

Reg (ξ̃f,t) 2.713*** 2.803*** 1.608** 3.017*** 2.420*** 1.622***
(0.693) (0.749) (0.716) (0.676) (0.827) (0.520)

Cites (θ̃f,t) 0.336*** 0.116 -0.041 -0.123* 0.092 0.082*
(0.086) (0.076) (0.084) (0.072) (0.084) (0.046)

log(Yf,t−1) -0.116*** -0.133*** -0.222*** -0.133*** -0.169*** -0.219***
(0.008) (0.008) (0.016) (0.011) (0.009) (0.008)

log(capitalf,t) 0.036*** 0.044*** 0.091*** 0.045*** 0.055*** 0.008***
(0.005) (0.005) (0.016) (0.005) (0.005) (0.002)

log(empf,t) 0.045*** 0.056*** 0.101*** 0.042*** 0.074*** -0.007***
(0.005) (0.006) (0.006) (0.013) (0.007) (0.003)

Year FE YES YES YES YES YES YES
Industry
FE

YES YES YES YES YES YES

N 127,849 126,403 138,351 136,541 134,504 126,270
R2 0.062 0.068 0.102 0.057 0.076 0.081
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E.2.4 Four-Year Growth (logYf,t+4 − logYf,t)

(1) (2) (3) (4) (5) (6)

Profit Output Capital Labor
Market
Share

Markup

Reg (ξ̃f,t) 3.341*** 2.449** 1.967** 3.629*** 2.887*** 1.560***
(0.926) (0.960) (0.880) (0.963) (1.067) (0.571)

Cites (θ̃f,t) 0.450*** 0.271*** 0.029 -0.090 0.121 0.099*
(0.103) (0.092) (0.098) (0.086) (0.108) (0.053)

log(Yf,t−1) -0.133*** -0.158*** -0.262*** -0.138*** -0.204*** -0.270***
(0.009) (0.010) (0.018) (0.015) (0.011) (0.009)

log(capitalf,t) 0.042*** 0.055*** 0.101*** 0.054*** 0.067*** 0.009***
(0.007) (0.007) (0.019) (0.006) (0.006) (0.003)

log(empf,t) 0.043*** 0.057*** 0.120*** 0.024 0.082*** -0.009***
(0.006) (0.008) (0.007) (0.019) (0.008) (0.003)

Year FE YES YES YES YES YES YES
Industry
FE

YES YES YES YES YES YES

N 116,378 115,176 125,456 123,892 122,201 114,995
R2 0.072 0.081 0.115 0.067 0.095 0.113

E.2.5 Five-Year Growth (logYf,t+5 − logYf,t)

(1) (2) (3) (4) (5) (6)

Profit Output Capital Labor
Market
Share

Markup

Reg (ξ̃f,t) 3.399*** 3.287*** 2.488** 4.357*** 2.557** 2.120***
(1.170) (1.032) (1.052) (1.061) (1.231) (0.567)

Cites (θ̃f,t) 0.541*** 0.299*** 0.063 -0.078 0.165 0.118**
(0.105) (0.097) (0.109) (0.097) (0.116) (0.051)

log(Yf,t−1) -0.144*** -0.177*** -0.292*** -0.139*** -0.239*** -0.302***
(0.010) (0.011) (0.022) (0.018) (0.012) (0.011)

log(capitalf,t) 0.047*** 0.062*** 0.108*** 0.064*** 0.080*** 0.009***
(0.008) (0.008) (0.023) (0.008) (0.007) (0.003)

log(empf,t) 0.038*** 0.054*** 0.130*** -0.002 0.087*** -0.009**
(0.008) (0.009) (0.008) (0.023) (0.009) (0.003)

Year FE YES YES YES YES YES YES
Industry
FE

YES YES YES YES YES YES

N 106,107 105,081 113,998 112,582 111,220 104,811
R2 0.081 0.093 0.124 0.080 0.116 0.133
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F Competitors’ Growth

F.1 Descriptive Statistics of Competitors’ Variables

Variable N Mean Median
Std.
Dev.

Min Max

Competitors’ innovation-
regulation alignment, scaled
(ξ̃I\f,t)

250,290 1.09e-3 0 2.31e-3 0 0.02

Competitors’ citation-
weighted patent counts
(θ̃I\f,t)

250,290 7.57e-3 9.52e-4 0.01 0 0.07

Competitors’ profit growth 222,715 0.05 0.05 0.27 -5.53 7.37
Competitors’ output growth 204,075 0.03 0.04 0.26 -6.41 6.17
Competitors’ capital growth 198,392 0.06 0.06 0.27 -6.06 8.38
Competitors’ employment
growth

210,878 0.02 0.02 0.26 -5.19 6.47

Notes: Profit, output, capital, and employment are all in first difference of log, which approximates the

percentage change in the variable.
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F.2 Full Estimation Results

The following tables show the estimated coefficients in equation (33) for τ ∈ {1, 2, 3, 4, 5}.

Standard errors in parentheses. ***=statistically significant at p < 0.01. **=statistically

significant at p < 0.05. *=statistically significant at p < 0.1.

F.2.1 One-Year Growth (logYI\f,t+1 − logYI\f,t)

(1) (2) (3) (4)
Profit Output Capital Labor

Reg (ξ̃f,t) -0.411 -0.174 -0.353 -0.069
(0.246) (0.232) (0.244) (0.220)

Cites (θ̃f,t) 0.007 0.010 0.011 -0.005
(0.020) (0.022) (0.020) (0.020)

ξ̃I\f,t -2.392 -1.947 -3.391 0.662
(1.931) (1.450) (2.619) (1.499)

θ̃I\f,t 0.616 -0.180 0.742* 0.035
(0.391) (0.337) (0.410) (0.389)

log(YI\f,t−1) -0.067*** -0.159*** -0.004 0.019
(0.011) (0.016) (0.015) (0.016)

log(capitalI\f,t) -0.007 0.042*** -0.094*** 0.018**
(0.010) (0.008) (0.020) (0.008)

log(empI\f,t) 0.007 0.075*** 0.038*** -0.113***
(0.013) (0.010) (0.009) (0.020)

Year FE YES YES YES YES
Industry FE YES YES YES YES
N 166,569 153,206 167,290 165,216
R2 0.107 0.117 0.086 0.081
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F.2.2 Two-Year Growth (logYI\f,t+2 − logYI\f,t)

(1) (2) (3) (4)
Profit Output Capital Labor

Reg (ξ̃f,t) -0.951** -0.643 -0.790** -0.347
(0.421) (0.386) (0.389) (0.376)

Cites (θ̃f,t) -0.005 -0.010 -0.030 -0.021
(0.028) (0.030) (0.030) (0.030)

ξ̃I\f,t -0.518 -1.338 -2.770 3.055*
(2.133) (1.872) (2.680) (1.731)

θ̃I\f,t 0.613 0.040 0.827 0.084
(0.554) (0.501) (0.588) (0.564)

log(YI\f,t−1) -0.106*** -0.175*** -0.030* 0.014
(0.014) (0.021) (0.017) (0.018)

log(capitalI\f,t) -0.018 0.027** -0.151*** 0.027***
(0.012) (0.011) (0.024) (0.009)

log(empI\f,t) -0.009 0.035** 0.060*** -0.183***
(0.017) (0.015) (0.013) (0.026)

Year FE YES YES YES YES
Industry FE YES YES YES YES
N 153,297 141,392 153,486 151,829
R2 0.159 0.155 0.147 0.142

F.2.3 Three-Year Growth (logYI\f,t+3 − logYI\f,t)

(1) (2) (3) (4)
Profit Output Capital Labor

Reg (ξ̃f,t) -1.447*** -1.152** -1.380** -0.532
(0.511) (0.514) (0.574) (0.522)

Cites (θ̃f,t) 0.028 0.019 0.035 0.013
(0.033) (0.040) (0.038) (0.040)

ξ̃I\f,t 1.912 1.090 -2.652 5.838***
(2.587) (2.445) (3.154) (1.887)

θ̃I\f,t 0.236 -0.114 1.036 -0.037
(0.643) (0.637) (0.625) (0.675)

log(YI\f,t−1) -0.149*** -0.207*** -0.025 0.014
(0.020) (0.021) (0.021) (0.017)

log(capitalI\f,t) -0.035*** 0.013 -0.232*** 0.040***
(0.013) (0.011) (0.033) (0.012)

log(empI\f,t) -0.016 0.015 0.075*** -0.259***
(0.016) (0.017) (0.015) (0.026)

Year FE YES YES YES YES
Industry FE YES YES YES YES
N 138,893 128,360 138,768 137,418
R2 0.213 0.209 0.201 0.196
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F.2.4 Four-Year Growth (logYI\f,t+4 − logYI\f,t)

(1) (2) (3) (4)
Profit Output Capital Labor

Reg (ξ̃f,t) -1.620** -1.483** -1.769** -0.812
(0.651) (0.582) (0.707) (0.629)

Cites (θ̃f,t) 0.075* 0.077* 0.077 0.068
(0.044) (0.042) (0.046) (0.049)

ξ̃I\f,t 3.868 3.567 -1.356 9.010***
(2.740) (2.392) (3.558) (2.309)

θ̃I\f,t 0.085 -0.252 0.962 -0.337
(0.731) (0.709) (0.697) (0.715)

log(YI\f,t−1) -0.194*** -0.240*** -0.038 0.004
(0.023) (0.021) (0.023) (0.017)

log(capitalI\f,t) -0.040** 0.007 -0.284*** 0.049***
(0.016) (0.012) (0.032) (0.014)

log(empI\f,t) -0.033* -0.015 0.080*** -0.323***
(0.019) (0.020) (0.016) (0.028)

Year FE YES YES YES YES
Industry FE YES YES YES YES
N 126,006 116,881 125,688 124,740
R2 0.258 0.256 0.251 0.247
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F.2.5 Five-Year Growth (logYI\f,t+5 − logYI\f,t)

(1) (2) (3) (4)
Profit Output Capital Labor

Reg (ξ̃f,t) -1.595* -1.540** -1.469* -0.747
(0.799) (0.712)) (0.865) (0.753)

Cites (θ̃f,t) 0.129** 0.122** 0.133** 0.110**
(0.049) (0.051) (0.053) (0.052)

ξ̃I\f,t 6.049* 6.021** -0.410 11.041***
(3.078) (2.677) (4.167) (2.730)

θ̃I\f,t 0.234 -0.444 1.256 -0.333
(0.844) (0.766) (0.776) (0.833)

log(YI\f,t−1) -0.233*** -0.254*** -0.055** -0.005
(0.023) (0.022) (0.023) (0.017)

log(capitalI\f,t) -0.054*** -0.016 -0.331*** 0.057***
(0.018) (0.013) (0.035) (0.016)

log(empI\f,t) -0.045** -0.042* 0.082*** -0.383***
(0.021) (0.024) (0.017) (0.032)

Year FE YES YES YES YES
Industry FE YES YES YES YES
N 114,600 106,561 114,041 113,475
R2 0.302 0.300 0.296 0.291
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G Aggregate Innovation-Regulation Alignment

Notes: Panel (a) plots the quarterly aggregate innovation-regulation alignment index, Rt, estimated from

equation (34). Panel (b) plots the growth of aggregate innovation-regulation alignment, as approximated by

∆Rt = log(Rt)− log(Rt−1).
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